【題目】如圖,將△ABC沿BC邊上的中線AD平移到△A′B′C′的位置,已知△ABC的面積為18,陰影部分三角形的面積為8,若AA′=1,則A′D的值為______

【答案】2

【解析】

SABC=18、SA′EF=8ADBC邊的中線知SA′DE=SA′EF=4,SABD=SABC=9,根據(jù)△DA′E∽△DAB()2=,據(jù)此求解可得.

解:如圖,

∵SABC=18、SA′EF=8,且ADBC邊的中線,

∴SA′DE=SA′EF=4,SABD=SABC=9

△ABC沿BC邊上的中線AD平移得到△A'B'C',

∴A′E∥AB,

∴△DA′E∽△DAB,

()2=,即()2=,

解得A′D=2(負(fù)值舍去),

故答案為:2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南沙群島是我國固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測得該島位于正北方向海里的C處,為了防止某國還巡警干擾,就請求我A處的魚監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點(diǎn)E和點(diǎn)F是對角線AC上的兩點(diǎn),AF=CE,DF=BE,且DFBE,過點(diǎn)CCGABAB延長線與點(diǎn)G

1)求證:四邊形ABCD是平行四邊形;

2)若tanCAB=,∠CBG=45°,BC=,則ABCD的面積是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,、在第二象限,橫坐標(biāo)分別是-4-2、-1,雙曲線、、三點(diǎn),且

(1)求雙曲線的解析式;

(2)點(diǎn)的直線軸于,交軸于,且,且交于另一點(diǎn),求點(diǎn)坐標(biāo);

(3)為邊(順時(shí)針方向)作正方形,平移正方形使落在軸上,點(diǎn)、對應(yīng)的點(diǎn)、正好落在反比例函數(shù)上,求對應(yīng)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某教育主管部門針對中小學(xué)生非統(tǒng)考學(xué)科的教學(xué)情況進(jìn)行年終考評,抽取某校八年級部分同學(xué)的成績作為樣本,把成績按(優(yōu)秀)、(良好)、(及格)、(不及格)四個(gè)級別進(jìn)行統(tǒng)計(jì),并繪成如圖所示不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)求被抽取的學(xué)生人數(shù);

2)補(bǔ)全條形統(tǒng)計(jì)圖,并求的圓心角度數(shù);

3)該校八年級有名學(xué)生,請估計(jì)達(dá)到、兩級的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某數(shù)學(xué)活動(dòng)小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=45°,∠B=60°,BC+1,點(diǎn)P為邊AB上一動(dòng)點(diǎn),過點(diǎn)PPDBC于點(diǎn)D,PEAC于點(diǎn)E,則DE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(9分)為進(jìn)一步推廣“陽光體育”大課間活動(dòng),某中學(xué)對已開設(shè)的A實(shí)心球,B立定跳遠(yuǎn),C跑步,D跳繩四種活動(dòng)項(xiàng)目的學(xué)生喜歡情況進(jìn)行調(diào)查,隨機(jī)抽取了部分學(xué)生,并將調(diào)查結(jié)果繪制成圖1,圖2的統(tǒng)計(jì)圖,請結(jié)合圖中的信息解答下列問題:

(1)請計(jì)算本次調(diào)查中喜歡“跑步”的學(xué)生人數(shù)和所占百分比,并將兩個(gè)統(tǒng)計(jì)圖補(bǔ)充完整;

(2)隨機(jī)抽取了5名喜歡“跑步”的學(xué)生,其中有3名女生,2名男生,現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生,請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,ACBC,∠ACB120°,P為△ABC內(nèi)部一點(diǎn),且滿足∠APB=∠BPC150°.

1)求證:△PAB∽△PBC;

2)求證:PA3PC;

3)若AB10,求PA的長.

查看答案和解析>>

同步練習(xí)冊答案