【題目】已知直線y=﹣x+6,交x軸、y軸于A、B兩點,拋物線y=x2+mx+n經(jīng)過A點,且與直線y=﹣x+6交于另一點P.
(1)若P與B點重合,求拋物線的解析式;
(2)若P在第一象限,過PE⊥x軸于E點,PF⊥y軸于F點,當四邊形PEOF面積為5,求拋物線的解析式;
(3)若△OAP為等腰三角形,求m的值.

【答案】
(1)

解:令x=0,則y=6;

令y=0,則﹣x+6=0,解得:x=6.

故A點坐標為(6,0),B點坐標為(0,6).

∵P與B點重合,

∴有 ,解得:

故當P與B點重合,拋物線的解析式為y=x2﹣7x+6


(2)

解:結合題意畫出圖形,如圖1所示.

∵點P在線段AB上,

∴設P點坐標為(a,﹣a+6)(0<m<6),則有PE=6﹣a,PF=a.

四邊形PEOF面積=PEPF=(6﹣a)×a=5,

解得:a=1,或a=5,

即點P的坐標為(1,5)或(5,1).

當點P坐標為(1,5)時,有 ,

解得: ,

此時拋物線的解析式為y=x2﹣8x+12;

當點P坐標為(5,1)時,有 ,

解得: ,

此時拋物線的解析式為y=x2﹣12x+36.

綜上可知,拋物線的解析式為y=x2﹣8x+12或者y=x2﹣12x+36


(3)

解:設點P的坐標為(b,6﹣b).

∵點O(0,0),點A(6,0),

∴OP= ,OA=6﹣0=6,PA=

∵△OAP為等腰三角形,

∴分三種情況考慮.

①當OP=OA時,有 =6,

解得:b=0,或b=6(舍去),

此時P點的坐標為(0,6).

同(1)一樣,故m=﹣7;

②當OP=PA,即 =

解得:b=3,

此時P點的坐標為(3,3).

將P(3,3),A(6,0)代入拋物線解析式,得:

,解得m=﹣10;

③當OA=PA時,有6= ,

解得:b=6±3 ,

此時P點的坐標為(6+3 ,﹣3 )或(6﹣3 ,3 ).

將P(6+3 ,﹣3 ),A(6,0)代入拋物線解析式,得:

,解得m=﹣3 ﹣13;

將P(6﹣3 ,3 ),A(6,0)代入拋物線解析式,得:

,解得m=3 ﹣13.

綜上可知:當△OAP為等腰三角形,m的值為﹣7,﹣10,﹣3 ﹣13和3 ﹣13


【解析】(1)分別令x、y=0,可求出B、A點的坐標,再利用待定系數(shù)法即可得出結論;(2)由四邊形PEOF面積為5可得出P點的坐標,結合A點的坐標利用待定系數(shù)法即可求得結論;(3)設出P點坐標,由兩點間的距離公式表示出△OAP的三條邊,再分類討論相鄰兩邊相等得出結論.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l:y=﹣ x,點A1坐標為(﹣3,0).過點A1作x軸的垂線交直線l于點B1 , 以原點O為圓心,OB1長為半徑畫弧交x軸負半軸于點A2 , 再過點A2作x軸的垂線交直線l于點B2 , 以原點O為圓心,OB2長為半徑畫弧交x軸負半軸于點A3 , …,按此做法進行下去,點A2016的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( 。

A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(2,a)在拋物線y=x2
(1)求A點的坐標;
(2)在x軸上是否存在點P,使△OAP是等腰三角形?若存在寫出P點坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值: ,其中x是不等式組 的一個整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市校計劃購買甲、乙兩種樹苗共200株來綠化校園,甲種樹苗每株25元,乙種樹苗每株30元,通過調(diào)查了解,甲乙兩種樹苗成活率分別是90%和95%.
(1)若購買這種樹苗共用去5600元,則甲、乙兩種樹苗各購買了多少株?
(2)如果要求這200株樹苗的成活率不低于93%,那么乙種樹苗至少要購買多少株.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,記m=|a﹣b+c|+|2a+b+c|,n=|a+b+c|+|2a﹣b﹣c|.則下列選項正確的是( 。
A.m<n
B.m>n
C.m=n
D.m、n的大小關系不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣16 ×cos45°﹣20170+31

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經(jīng)過O,A兩點,且頂點在BC邊上,對稱軸交BE于點F,點D,E的坐標分別為(3,0),(0,1).

(1)求拋物線的解析式;
(2)猜想△EDB的形狀并加以證明;
(3)點M在對稱軸右側的拋物線上,點N在x軸上,請問是否存在以點A,F(xiàn),M,N為頂點的四邊形是平行四邊形?若存在,請求出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案