【題目】我市某風(fēng)景區(qū)門票價格如圖所示,百姓旅行社有甲、乙兩個旅行團(tuán)隊,計劃在“五一”小黃金周期間到該景點游玩,兩團(tuán)隊游客人數(shù)之和為120人,乙團(tuán)隊人數(shù)不超過50人.設(shè)甲團(tuán)隊人數(shù)為x人,如果甲、乙兩團(tuán)隊分別購買門票,兩團(tuán)隊門票款之和為W元.
(1)求W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x 的取值范圍;
(2)若甲團(tuán)隊人數(shù)不超過100人,請說明甲、乙兩團(tuán)隊聯(lián)合購票比分別購票最多可節(jié)約多少元.

【答案】
(1)

解:∵甲團(tuán)隊人數(shù)為x人,乙團(tuán)隊人數(shù)不超過50人,

∴120﹣x≤50,解得:x≥70.

①當(dāng)70≤x≤100時,W=70x+80(120﹣x)=﹣10x+9600;

②當(dāng)100<x<120時,W=60x+80(120﹣x)=﹣20x+9600.

綜上所述,W=


(2)

解:∵甲團(tuán)隊人數(shù)不超過100人,

∴x≤100,W=﹣10x+9600,

∵70≤x≤100,W隨x的增大而減少,

∴x=70時,W取最大值,最大值=﹣10×70+9600=8900(元),

若兩團(tuán)聯(lián)合購票需120×60=7200(元),

∴最多可節(jié)約8900﹣7200=1700(元).

答:甲、乙兩團(tuán)隊聯(lián)合購票比分別購票最多可節(jié)約1700元錢.


【解析】(1)由甲團(tuán)隊人數(shù)為x人,乙團(tuán)隊人數(shù)不超過50人,可得出關(guān)于x的一元一次不等式,解不等式可得出x的取值范圍,結(jié)合門票價與人數(shù)的關(guān)系分段考慮,由總錢數(shù)=甲團(tuán)隊購票錢數(shù)+乙團(tuán)隊購票錢數(shù)得出函數(shù)關(guān)系式;(2)由甲團(tuán)隊人數(shù)不超過100人,選定所用W關(guān)于x的函數(shù)解析式,由一次函數(shù)的單調(diào)性結(jié)合x的取值范圍可得出W的最大值,用其減去甲乙團(tuán)隊合作購票所需錢數(shù)即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點,與y軸交于點C,其頂點為點D,點E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點F,連接BC.

(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動點M從點D出發(fā),以每秒1個單位的速度平沿行與y軸方向向上運動,連接OM,BM,設(shè)運動時間為t秒(t>0),在點M的運動過程中,當(dāng)t為何值時,∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點P,使得∠PBF被BA平分?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l:y=﹣ x,點A1坐標(biāo)為(﹣3,0).過點A1作x軸的垂線交直線l于點B1 , 以原點O為圓心,OB1長為半徑畫弧交x軸負(fù)半軸于點A2 , 再過點A2作x軸的垂線交直線l于點B2 , 以原點O為圓心,OB2長為半徑畫弧交x軸負(fù)半軸于點A3 , …,按此做法進(jìn)行下去,點A2016的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會的廣泛關(guān)注,東營市某中學(xué)對部分學(xué)生就校園安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計,繪制了如圖兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應(yīng)扇形的圓心角為
(2)請補全條形統(tǒng)計圖;
(3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學(xué)學(xué)生中對校園安全知識達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對校園安全知識達(dá)到了“了解”程度的3個女生和2個男生中隨機(jī)抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,點E是AD上的一點,有AE=4,BE的垂直平分線交BC的延長線于點F,連結(jié)EF交CD于點G.若G是CD的中點,則BC的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點B逆時針旋轉(zhuǎn)90°得到△EBF,若點F剛好落在DA的延長線上,則∠C=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是( 。

A.88°
B.92°
C.106°
D.136°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(2,a)在拋物線y=x2
(1)求A點的坐標(biāo);
(2)在x軸上是否存在點P,使△OAP是等腰三角形?若存在寫出P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:﹣16 ×cos45°﹣20170+31

查看答案和解析>>

同步練習(xí)冊答案