【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C,其頂點(diǎn)為點(diǎn)D,點(diǎn)E的坐標(biāo)為(0,﹣1),該拋物線與BE交于另一點(diǎn)F,連接BC.

(1)求該拋物線的解析式,并用配方法把解析式化為y=a(x﹣h)2+k的形式;
(2)若點(diǎn)H(1,y)在BC上,連接FH,求△FHB的面積;
(3)一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度平沿行與y軸方向向上運(yùn)動(dòng),連接OM,BM,設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0),在點(diǎn)M的運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí),∠OMB=90°?
(4)在x軸上方的拋物線上,是否存在點(diǎn)P,使得∠PBF被BA平分?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)

解:∵拋物線y=ax2+bx﹣2(a≠0)與x軸交于A(1,0)、B(3,0)兩點(diǎn),

,

∴拋物線解析式為y=﹣ x2+ x﹣2=﹣ (x﹣2)2+ ;


(2)

解:如圖1,

過(guò)點(diǎn)A作AH∥y軸交BC于H,BE于G,

由(1)有,C(0,﹣2),

∵B(0,3),

∴直線BC解析式為y= x﹣2,

∵H(1,y)在直線BC上,

∴y=﹣

∴H(1,﹣ ),

∵B(3,0),E(0,﹣1),

∴直線BE解析式為y=﹣ x﹣1,

∴G(1,﹣ ),

∴GH= ,

∵直線BE:y=﹣ x﹣1與拋物線y=﹣ x2+ x﹣2相較于F,B,

∴F( ,﹣ ),

∴SFHB= GH×|xG﹣xF|+ GH×|xB﹣xG|

= GH×|xB﹣xF|

= × ×(3﹣

=


(3)

解:如圖2,

由(1)有y=﹣ x2+ x﹣2,

∵D為拋物線的頂點(diǎn),

∴D(2, ),

∵一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度平沿行與y軸方向向上運(yùn)動(dòng),

∴設(shè)M(2,m),(m> ),

∴OM2=m2+4,BM2=m2+1,AB2=9,

∵∠OMB=90°,

∴OM2+BM2=AB2

∴m2+4+m2+1=9,

∴m= 或m=﹣ (舍),

∴M(0, ),

∴MD=

∵一動(dòng)點(diǎn)M從點(diǎn)D出發(fā),以每秒1個(gè)單位的速度平沿行與y軸方向向上運(yùn)動(dòng),

∴t=


(4)

解:存在點(diǎn)P,使∠PBF被BA平分,

如圖3,

∴∠PBO=∠EBO,

∵E(0,﹣1),

∴在y軸上取一點(diǎn)N(0,1),

∵B(3,0),

∴直線BN的解析式為y=﹣ x+1①,

∵點(diǎn)P在拋物線y=﹣ x2+ x﹣2②上,

聯(lián)立①②得, (舍),

∴P( ),

即:在x軸上方的拋物線上,存在點(diǎn)P,使得∠PBF被BA平分,P( , ).


【解析】此題是二次函數(shù)綜合題,主要考查了待定系數(shù)法求函數(shù)解析式,勾股定理,兩點(diǎn)間的距離公式,角平分線的意義,解本題的關(guān)鍵是確定函數(shù)解析式.(1)用待定系數(shù)法求出拋物線解析式;(2)先求出GH,點(diǎn)F的坐標(biāo),用三角形的面積公式計(jì)算即可;(3)設(shè)出點(diǎn)M,用勾股定理求出點(diǎn)M的坐標(biāo),從而求出MD,最后求出時(shí)間t;(4)由∠PBF被BA平分,確定出過(guò)點(diǎn)B的直線BN的解析式,求出此直線和拋物線的交點(diǎn)即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩點(diǎn)間的距離的相關(guān)知識(shí),掌握同軸兩點(diǎn)求距離,大減小數(shù)就為之.與軸等距兩個(gè)點(diǎn),間距求法亦如此.平面任意兩個(gè)點(diǎn),橫縱標(biāo)差先求值.差方相加開平方,距離公式要牢記,以及對(duì)角的平分線的理解,了解從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如圖1,點(diǎn)C在線段AB上,若滿足AC2=BCAB,則稱點(diǎn)C為線段AB的黃金分割點(diǎn).如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點(diǎn)D.
(1)求證:點(diǎn)D是線段AC的黃金分割點(diǎn);
(2)求出線段AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:AB是⊙O的弦,過(guò)點(diǎn)B作BC⊥AB交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線交AB的延長(zhǎng)線于點(diǎn)D,取AD的中點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交DC的延長(zhǎng)線于點(diǎn)F,連接AF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
求證:

(1)FC=FG;
(2)AB2=BCBG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O在△ABC內(nèi),且到三邊的距離相等.若∠BOC=120°,則tanA的值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有1個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為
(1)求袋子中白球的個(gè)數(shù);(請(qǐng)通過(guò)列式或列方程解答)
(2)隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:4sin60°+|3﹣ |﹣( 1+(π﹣2016)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準(zhǔn)備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會(huì)減少,單棵樹的產(chǎn)量隨之降低.若該果園每棵果樹產(chǎn)果y(千克),增種果樹x(棵),它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)關(guān)系式;
(2)在投入成本最低的情況下,增種果樹多少棵時(shí),果園可以收獲果實(shí)6750千克?
(3)當(dāng)增種果樹多少棵時(shí),果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,點(diǎn)P是BA延長(zhǎng)線上一點(diǎn),PC是⊙O的切線,切點(diǎn)為C,過(guò)點(diǎn)B作BD⊥PC交PC的延長(zhǎng)線于點(diǎn)D,連接BC.求證:

(1)∠PBC=∠CBD;
(2)BC2=ABBD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某風(fēng)景區(qū)門票價(jià)格如圖所示,百姓旅行社有甲、乙兩個(gè)旅行團(tuán)隊(duì),計(jì)劃在“五一”小黃金周期間到該景點(diǎn)游玩,兩團(tuán)隊(duì)游客人數(shù)之和為120人,乙團(tuán)隊(duì)人數(shù)不超過(guò)50人.設(shè)甲團(tuán)隊(duì)人數(shù)為x人,如果甲、乙兩團(tuán)隊(duì)分別購(gòu)買門票,兩團(tuán)隊(duì)門票款之和為W元.
(1)求W關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x 的取值范圍;
(2)若甲團(tuán)隊(duì)人數(shù)不超過(guò)100人,請(qǐng)說(shuō)明甲、乙兩團(tuán)隊(duì)聯(lián)合購(gòu)票比分別購(gòu)票最多可節(jié)約多少元.

查看答案和解析>>

同步練習(xí)冊(cè)答案