【題目】拋物線y=﹣x2+x﹣1與x軸交于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為D.將拋物線位于直線l:y=t(t<)上方的部分沿直線l向下翻折,拋物線剩余部分與翻折后所得圖形組成一個(gè)“M”形的新圖象.
(1)點(diǎn)A,B,D的坐標(biāo)分別為 , , ;
(2)如圖①,拋物線翻折后,點(diǎn)D落在點(diǎn)E處.當(dāng)點(diǎn)E在△ABC內(nèi)(含邊界)時(shí),求t的取值范圍;
(3)如圖②,當(dāng)t=0時(shí),若Q是“M”形新圖象上一動(dòng)點(diǎn),是否存在以CQ為直徑的圓與x軸相切于點(diǎn)P?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/28/2213337932849152/2214008649842688/STEM/890e59b444e5404588b8511540e03e41.png]
【答案】(1)A(,0);B(3,0);D(,);(2)≤t≤;(3)存在以CQ為直徑的圓與x軸相切于點(diǎn)P,點(diǎn)P的坐標(biāo)為(,0)、(,0)、(1,0)或(,0).
【解析】
(1)利用二次函數(shù)圖像上的點(diǎn)的坐標(biāo)特征可求得點(diǎn)A、B的坐標(biāo),再利用配方法即可找到拋物線的頂點(diǎn)坐標(biāo);
(2)由點(diǎn)D的坐標(biāo)結(jié)合對(duì)稱(chēng)找到點(diǎn)E的坐標(biāo),根據(jù)點(diǎn)B、C的坐標(biāo)利用待定系數(shù)法確定直線BC函數(shù)關(guān)系式,再利用一次函數(shù)圖像上的坐標(biāo)特征即可得出關(guān)于t的一元一次不等式組,解之即可得出t的取值范圍;
(3)假設(shè)存在,設(shè)點(diǎn)P的坐標(biāo)為(,0),則點(diǎn)Q的橫坐標(biāo)為m,分或及三種情況,利用勾股定理找出關(guān)于m的一元二次方程,解出即可得出m的值,進(jìn)而可找出點(diǎn)P的坐標(biāo).
解:(1)當(dāng)y=0時(shí),﹣x2+x﹣1=0,
解得x1=,x2=3,
∴點(diǎn)A的坐標(biāo)為(,0),點(diǎn)B的坐標(biāo)為(3,0),
∵y=﹣x2+x﹣1=﹣(x-)2+,
∴點(diǎn)D的坐標(biāo)為(,);
(2)∵點(diǎn)E、點(diǎn)D關(guān)于直線y=t對(duì)稱(chēng),
∴點(diǎn)E的坐標(biāo)為(,2t﹣).
當(dāng)x=0時(shí),y=﹣x2+x﹣1=﹣1,
∴點(diǎn)C的坐標(biāo)為(0,﹣1).
設(shè)線段BC所在直線的解析式為y=kx+b,
將B(3,0)、C(0,﹣1)代入y=kx+b,
,解得:,
∴線段BC所在直線的解析式為y=x﹣1.
∵點(diǎn)E在△ABC內(nèi)(含邊界),
∴,
解得:≤t≤.
(3)當(dāng)x<或x>3時(shí),y=﹣x2+x﹣1;
當(dāng)≤x≤3時(shí),y=﹣x2+x﹣1.
假設(shè)存在,設(shè)點(diǎn)P的坐標(biāo)為(m,0),則點(diǎn)Q的橫坐標(biāo)為m.
①當(dāng)m<或m>3時(shí),點(diǎn)Q的坐標(biāo)為(m,﹣x2+x﹣1)(如圖1),
∵以CQ為直徑的圓與x軸相切于點(diǎn)P,
∴CP⊥PQ,
∴CQ2=CP2+PQ2,
即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,
整理,得:m1=,m2=,
∴點(diǎn)P的坐標(biāo)為(,0)或(,0);
②當(dāng)≤m≤3時(shí),點(diǎn)Q的坐標(biāo)為(m,x2-x +1)(如圖2),
∵以CQ為直徑的圓與x軸相切于點(diǎn)P,
∴CP⊥PQ,
∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,
整理,得:11m2﹣28m+12=0,
解得:m3=,m4=2,
∴點(diǎn)P的坐標(biāo)為(,0)或(1,0).
綜上所述:存在以CQ為直徑的圓與x軸相切于點(diǎn)P,點(diǎn)P的坐標(biāo)為(,0)、(,0)、(1,0)或(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣2,0),B(﹣8,0),C(﹣4,4).
(1)求這個(gè)拋物線的表達(dá)式;
(2)如圖2,一把寬為2的直尺的右邊緣靠在直線x=﹣4上,當(dāng)直尺向左平移過(guò)程中刻度線0始終在x軸上,直尺的右邊邊緣與拋物線和直線BC分別交于G、D點(diǎn),直尺的左邊邊緣與拋物線和直線BC分別交于F、E點(diǎn),當(dāng)圖中四邊形DEFG是平行四邊形時(shí),此時(shí)直尺左邊邊緣與直線BC的交點(diǎn)E的刻度是多少?
(3)如圖3,在直線x=﹣4上找一點(diǎn)K,使得∠ACP+∠AKC=∠ABC(直線x=﹣4與x軸交于P點(diǎn)),請(qǐng)直接寫(xiě)出K點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校舉行全體學(xué)生“漢字聽(tīng)寫(xiě)”比賽,每位學(xué)生聽(tīng)寫(xiě)漢字個(gè).隨機(jī)抽取了部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,繪制成如下的圖表:
組別 | 正確字?jǐn)?shù) | 人數(shù) |
根據(jù)以上信息完成下列問(wèn)題:
()統(tǒng)計(jì)表中的__________,__________,并補(bǔ)全直方圖.
()扇形統(tǒng)計(jì)圖中“組”所對(duì)應(yīng)的圓心角的度數(shù)是__________.
()已知該校共有名學(xué)生,如果聽(tīng)寫(xiě)正確的字的個(gè)數(shù)少于個(gè)定為不合格,請(qǐng)你估計(jì)該校本次聽(tīng)寫(xiě)比賽不合格的學(xué)生人數(shù).
各組別人數(shù)分布比例 | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是梯形,AB∥CD,AB=BC=DA=1,CD=2,按圖中所示的規(guī)律,用2009個(gè)這樣的梯形鑲嵌而成的四邊形的周長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(4,0),B(0,3),C(4,3),I是△ABC的內(nèi)心,將△ABC繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,I的對(duì)應(yīng)點(diǎn)I'的坐標(biāo)為( 。
A. (﹣2,3) B. (﹣3,2) C. (3,﹣2) D. (2,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,設(shè)銳角∠DOC=α,將△DOC按逆時(shí)針?lè)较蛐D(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點(diǎn)M.
(1)當(dāng)四邊形ABCD是矩形時(shí),如圖1,請(qǐng)猜想AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并證明你的猜想;
(2)當(dāng)四邊形ABCD是平行四邊形時(shí),如圖2,已知AC=BD,請(qǐng)猜想此時(shí)AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并證明你的猜想;
(3)當(dāng)四邊形ABCD是等腰梯形時(shí),如圖3,AD∥BC,此時(shí)(1)AC′與BD′的數(shù)量關(guān)系是否成立?∠AMB與α的大小關(guān)系是否成立?不必證明,直接寫(xiě)出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是關(guān)于x的拋物線解析式.
求證:拋物線與x軸一定有兩個(gè)交點(diǎn);
點(diǎn)、、是拋物線上的三個(gè)點(diǎn),當(dāng)拋物線經(jīng)過(guò)原點(diǎn)時(shí),判斷、、的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放置在水平桌面上的臺(tái)燈燈臂AB長(zhǎng)為42cm,燈罩BC長(zhǎng)為32cm,底座厚度為2cm,燈臂與底座構(gòu)成的∠BAD=60°.使用發(fā)現(xiàn),光線最佳時(shí)燈罩BC與水平線所成的角為30°,此時(shí)燈罩頂端C到桌面的高度CE是多少cm?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com