【題目】如圖,平面直角坐標系中,點的坐標分別為、,關于點的位似圖形,且的坐標為,則點的坐標為________

【答案】

【解析】

過點BBEx軸于點E,B′B′Fx軸于點F,根據位似性質可知OA:OA′=AB:AB′=3:4,根據平行線分線段成比例性質可知AE:AF=BE:FB′=AB:AB′=3:4,即可求出AFFB′的長,進而求出OF的長即可知B′的坐標.

如圖,過點BBEx軸于點E,B′B′Fx軸于點F,

∵點A、B的坐標分別為(3,0)、(2,﹣3),

AE=1,EO=2,BE=3,

∵△AB′O′是△ABO關于的A的位似圖形,且O′的坐標為(﹣1,0),

∴△AOB∽△AO′B′,

OA:OA′=AB:AB′=3:4,

BE//FB′,

AE:AF=BE:FB′=AB:AB′=3:4,

即:1:AF=3:4; 3:FB′=3:4

AF=;FB′=4,

OF=3-=

B′在第四象限,

B′點的坐標為:(,-4)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】RtABDRtACE如下3個圖擺放,其中ABAD,ACAE

1)如圖1,求證:BECD

2)如圖2,MDE中點,求證:BC2AM

3)如圖3ABCE,AEBC,AC,AB2,直接寫出四邊形BCED的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應新舊動能轉換.提高公司經濟效益.某科技公司近期研發(fā)出一種新型高科技設備,每臺設備成本價為30萬元,經過市場調研發(fā)現(xiàn),每臺售價為40萬元時,年銷售量為600;每臺售價為45萬元時,年銷售量為550.假定該設備的年銷售量y(單位:)和銷售單價(單位:萬元)成一次函數(shù)關系.

(1)求年銷售量與銷售單價的函數(shù)關系式;

(2)根據相關規(guī)定,此設備的銷售單價不得高于70萬元,如果該公司想獲得10000萬元的年利潤.則該設備的銷售單價應是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,已知∠C=90°,sinB,AC=8,D為線段BC上一點,CD=2.

(1)求BD的值;

(2)求cos∠DAC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛汽車行駛時的耗油量為0.1/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數(shù)圖象.

(1)根據圖象,直接寫出汽車行駛400千米時,油箱內的剩余油量,并計算加滿油時油箱的油量;

(2)求關于的函數(shù)關系式,并計算該汽車在剩余油量5升時,已行駛的路程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,,垂足為,,分別是,邊上一點.

(1)求證:

(2),,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有甲乙兩個不透明的布袋,甲布袋裝有2個形狀和重量完全相同的小球,分別標有數(shù)字1和2;乙布袋裝有3個形狀和重量完全相同的小球,分別標有數(shù)字﹣3,﹣1和0.先從甲布袋中隨機取出一個小球,將小球上標有的數(shù)字記作x;再從乙布袋中隨機取出一個小球,再將小球標有的數(shù)字記作y.

(1)用畫樹狀圖或列表法寫出兩次摸球的數(shù)字可能出現(xiàn)的所有結果;

(2)若從甲、乙兩布袋中取出的小球上面的數(shù)記作點的坐標(x,y),求點(x,y)在一次函數(shù)y=﹣2x+1圖象上的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD為∠BAC的平分線,DGBC且平分BC,DEABE,DFACAC的延長線于F


1)求證:BE=CF;
2)如果AB=7AC=5,求AEBE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程

解:設x24xy,

原式=(y+2)(y+6+4。ǖ谝徊剑

y2+8y+16 (第二步)

=(y+42(第三步)

=(x24x+42(第四步)

1)該同學第二步到第三步運用了因式分解的   (填序號).

A.提取公因式 B.平方差公式

C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式

2)該同學在第四步將y用所設中的x的代數(shù)式代換,得到因式分解的最后結果.這個結果是否分解到最后?   .(填)如果否,直接寫出最后的結果   

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

同步練習冊答案