【題目】如圖,在一面與地面垂直的圍墻的同側(cè)有一根高10米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測得電線桿的高度,一個(gè)小組的同學(xué)進(jìn)行了如下測量:某一時(shí)刻,在太陽光照射下,旗桿落在圍墻上的影子EF的長度為2米,落在地面上的影子BF的長為10米,而電線桿落在圍墻上的影子GH的長度為3米,落在地面上的影子DH的長為5米,依據(jù)這些數(shù)據(jù),該小組的同學(xué)計(jì)算出了電線桿的高度.

(1)該小組的同學(xué)在這里利用的是   投影的有關(guān)知識進(jìn)行計(jì)算的;

(2)試計(jì)算出電線桿的高度,并寫出計(jì)算的過程.

【答案】(1) 平行;(2)電線桿的高度為7米.

【解析】試題分析:(1)有太陽光是平行光線可得利用的是平行投影;

2)連接AM、CG,過點(diǎn)EEN⊥AB于點(diǎn)N,過點(diǎn)GGM⊥CD于點(diǎn)M,

根據(jù)平行投影時(shí)同一時(shí)刻物體與他的影子成比例求出電線桿的高度.

試題解析:(1)平行;

2)連接AM、CG,過點(diǎn)EEN⊥AB于點(diǎn)N,過點(diǎn)GGM⊥CD于點(diǎn)M,

BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5

所以AN=10-2=8,

有平行投影可知:

解得CD=7

所以電線桿的高度為7m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C、D分別為線段AB、OB的中點(diǎn),點(diǎn)POA上一動(dòng)點(diǎn),當(dāng)PC+PD最小時(shí),點(diǎn)P的坐標(biāo)為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE30°,BE1,折疊后,點(diǎn)C落在AD邊上的C1處,并且點(diǎn)B落在EC1邊上的B1處.則EC的長為( 。

A. B. 2 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校獎(jiǎng)勵(lì)學(xué)生,初一獲獎(jiǎng)學(xué)生中,有一人獲獎(jiǎng)品3件,其余每人獲獎(jiǎng)品7件;初二獲獎(jiǎng)學(xué)生中,有一人獲獎(jiǎng)品4件,其余每人獲獎(jiǎng)品9件.如果兩個(gè)年級獲獎(jiǎng)人數(shù)不等,但獎(jiǎng)品數(shù)目相等,且每個(gè)年級獎(jiǎng)品數(shù)大于50而不超過100,那么兩個(gè)年級獲獎(jiǎng)學(xué)生共有_____人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm∠B=60°,GCD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長線與BC的延長線交于點(diǎn)F,連接CEDF

1)求證:四邊形CEDF是平行四邊形;

2當(dāng)AE= cm時(shí),四邊形CEDF是矩形;

當(dāng)AE= cm時(shí),四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把長方形紙片ABCD沿EF折疊后.點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在點(diǎn)C′的位置上.若∠1=60°AE=1

1)求∠2、∠3的度數(shù);

2)求長方形紙片ABCD的面積S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,BC=,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長的速度向A點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)DE運(yùn)動(dòng)的時(shí)間是t秒(t0).過點(diǎn)DDFBC于點(diǎn)F,連接DE、EF

1AC的長是  ,AB的長是  

2)在D、E的運(yùn)動(dòng)過程中,線段EFAD的關(guān)系是否發(fā)生變化?若不變化,那么線段EFAD是何關(guān)系,并給予證明;若變化,請說明理由.

3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABO中,斜邊AB=1.若OCBA,AOC=36°,則(

A.點(diǎn)BAO的距離為sin54°

B.點(diǎn)BAO的距離為tan36°

C.點(diǎn)AOC的距離為sin36°sin54°

D.點(diǎn)AOC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直線y=3x+1向下平移1個(gè)單位長度,得到直線y=3x +m,若反比例函數(shù)的圖象與直線y=3x+m相交于點(diǎn)A,且點(diǎn)A 的縱坐標(biāo)是3.

(1)mk的值;

(2) 直接寫出方程的解:

(3) 結(jié)合圖象求不等式的解集

查看答案和解析>>

同步練習(xí)冊答案