精英家教網 > 初中數學 > 題目詳情

【題目】某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現(xiàn)隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖,請結合以上信息解答下列問題:

1)求m的值;

2)請補全上面的條形統(tǒng)計圖;

3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為多少度?

4)已知該校共有1200名學生,請你估計該校約有多少名學生最喜愛足球活動?

【答案】(1)150;(2)詳見解析;(3)36°;(4)240.

【解析】

1)根據排球人數及其所占百分比可得總人數;

2)求得足球的人數=150×20%30人,補全上面的條形統(tǒng)計圖即可;

3360°×乒乓球所占的百分比即可得到結論;

4)用總人數乘以樣本中足球所占的百分比.

解:(1m21÷14%150;

2)足球的人數為150×20%30

補全圖形如下:

3)在圖2中,乒乓球所對應扇形的圓心角的度數為360°×36°;

4)估計該校最喜愛足球活動的學生約有1200×20%240人.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】下面是小明同學設計的已知底邊及底邊上的高作等腰三角形的尺規(guī)作圖的過程.

已知:如圖1,線段a和線段b

求作:ABC,使得AB=AC,BC=a,BC邊上的高為b

作法:如圖2,

①作射線BM,并在射線BM上截取BC=a;

②作線段BC的垂直平分線PQ,PQBCD;

③以D為圓心,b為半徑作圓,交PQA;

④連接ABAC

ABC就是所求作的圖形.

根據上述作圖過程,回答問題:

1)用直尺和圓規(guī),補全圖2中的圖形;

2)完成下面的證明:

證明:由作圖可知BC=aAD=b

PQ為線段BC的垂直平分線,點APQ上,

AB=AC______)(填依據).

又∵AD在線段BC的垂直平分線PQ上,

ADBC

ADBC邊上的高,且AD=b

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線yx2+bx3過點A10),直線AD交拋物線于點D,點D的橫坐標為﹣2,點P是線段AD上的動點.

1b   ,拋物線的頂點坐標為   

2)求直線AD的解析式;

3)過點P的直線垂直于x軸,交拋物線于點Q,連接AQDQ,當ADQ的面積等于ABD的面積的一半時,求點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在等腰RtABC中,∠CAB=90°,PABC內一點,將PABA逆時針旋轉90°DAC

1)試判斷PAD的形狀并說明理由;

2)連接PC,若∠APB=135°PA=1,PB=3,求PC的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某公司研發(fā)生產的560件新產品需要精加工后才能投放市場.現(xiàn)由甲、乙兩個工廠來加工生產,已知甲工廠每天加工生產的新產品件數是乙工廠每天加工生產新產品件數的1.5倍,并且加工生產240件新產品甲工廠比乙工廠少用4天.

1)求甲、乙兩個工廠每天分別可加工生產多少件新產品?

2)若甲工廠每天的加工生產成本為2.8萬元,乙工廠每天的加工生產成本為2.4萬元要使這批新產品的加工生產總成本不超過60萬元,至少應安排甲工廠加工生產多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春節(jié)假期間,小明和小華都準備在某市的九龍瀑布(記為A)、鳳凰谷(記為B)、彩色沙林(記為C)、海峰濕地(記為D)這四個景點中任選一個去游玩,每個景點被選中的可能性相同.

(1)求小明去鳳凰谷的概率;

(2)用樹狀圖或列表的方法求小明和小華都去九龍瀑布的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某數學興趣小組用高為1.2米的測角儀測量小樹AB的高度,如圖,在距AB一定距離的F處測得小樹頂部A的仰角為50°,沿BF方向行走3.5米到G處時,又測得小樹頂部A的仰角為27°,求小樹AB的高度.(參考數據:sin27°=0.45cos27°=0.89,tan27°=0.5sin50°=0.77,cos50°=0.64tan50°=1.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1)如圖1,在矩形ABCD中,對角線ACBD相交于點O,過點O作直線EFBD,且交AD于點E,交BC于點F,連接BEDF,且BE平分∠ABD

①求證:四邊形BFDE是菱形;

②直接寫出∠EBF的度數.

2)把(1)中菱形BFDE進行分離研究,如圖2G,I分別在BFBE邊上,且BGBI,連接GD,HGD的中點,連接FH,并延長FHED于點J,連接IJ,IHIF,IG.試探究線段IHFH之間滿足的關系,并說明理由;

3)把(1)中矩形ABCD進行特殊化探究,如圖3,矩形ABCD滿足ABAD時,點E是對角線AC上一點,連接DE,作EFDE,垂足為點E,交AB于點F,連接DF,交AC于點G.請直接寫出線段AG,GEEC三者之間滿足的數量關系.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD的對角線ACBD相交于點O,OEOF

1)求證:BOE≌△DOF;

2)若BDEF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案