【題目】如圖,在平面直角坐標(biāo)系中,為坐標(biāo)原點,矩形的頂點、,將矩形的一個角沿直線折疊,使得點落在對角線上的點處,折痕與軸交于點.

1)線段的長度為__________;

2)求直線所對應(yīng)的函數(shù)解析式;

3)若點在線段上,在線段上是否存在點,使四邊形是平行四邊形?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

【答案】(1)15;(2);(3)

【解析】

1)根據(jù)勾股定理即可解決問題;
2)設(shè)AD=x,則OD=OA=AD=12-x,根據(jù)軸對稱的性質(zhì),DE=x,BE=AB=9,又OB=15,可得OE=OB-BE=15-9=6,在RtOED中,根據(jù)OE2+DE2=OD2,構(gòu)建方程即可解決問題;
3)過點EEPBDBC于點P,過點PPQDEBD于點Q,則四邊形DEPQ是平行四邊形,再過點EEFOD于點F,想辦法求出最小PE的解析式即可解決問題。

解:(1)在RtABC中,∵OA=12AB=9

故答案為15

2)如圖,

設(shè),則

根據(jù)軸對稱的性質(zhì),,

,

中,

,則

,

設(shè)直線所對應(yīng)的函數(shù)表達式為:

,

解得

∴直線所對應(yīng)的函數(shù)表達式為:

故答案為:

3)過點于點,過點于點,則四邊形是平行四邊形,再過點于點,

,即點的縱坐標(biāo)為,

又點在直線上,

,解得,

由于,所以可設(shè)直線,

在直線

,解得

∴直線

,則,解得,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將菱形紙片ABCD折疊,使點A恰好落在菱形的對稱中心O處,折痕為EF,若菱形ABCD的邊長為2cm,A=120°,則EF的長為( 。

A. 2 B. 2 C. D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,記的函數(shù)0n0)的圖象為圖形G, 已知圖形G軸交于點,當(dāng)時,函數(shù)有最。ɑ蜃畲螅┲n, B的坐標(biāo)為(, ),點A、B關(guān)于原點O的對稱點分別為C、D,若A、BC、D中任何三點都不在一直線上,且對角線ACBD的交點與原點O重合,則稱四邊形ABCD為圖形G的伴隨四邊形,直線AB為圖形G的伴隨直線.

1)如圖,若函數(shù)的圖象記為圖形G,求圖形G的伴隨直線的表達式;

2)如圖,若圖形G的伴隨直線的表達式是,且伴隨四邊形的面積為12,求的函數(shù)m0,n 0)的表達式;

3)如圖,若圖形G的伴隨直線是,且伴隨四邊形ABCD是矩形,求點B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6/件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期一個月(30)的試銷售,售價為10/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷售量y()與銷售時間x()之間的函數(shù)關(guān)系.

(1)yx之間的函數(shù)表達式,并寫出x的取值范圍;

(2)若該節(jié)能產(chǎn)品的日銷售利潤為W(),求Wx之間的函數(shù)表達式,并求出日銷售利潤不超過1040元的天數(shù)共有多少天?

(3)5≤x≤17,直接寫出第幾天的日銷售利潤最大,最大日銷售利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)了一種新藥,在試驗效果時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,服藥后血液中的含藥量逐漸增多,一段時間后達到最大值,接著藥量逐步衰減直至血液中含藥量為0,每毫升血液中含藥量(微克)隨時間(小時)的變化如圖所示,下列說法:(12小時血液中含藥量最高,達每毫升6微克.2)每毫升血液中含藥量不低于4微克的時間持續(xù)達到了6小時.3)如果一病人下午6:00按規(guī)定劑量服此藥,那么,第二天中午12:00,血液中不再含有該藥,其中正確說法的個數(shù)是()

A. 0B. 1

C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一組數(shù)據(jù)1,2,3,4,x的平均數(shù)與中位數(shù)相同,則實數(shù)x的值不可能( )

A. 0 B. 2.5 C. 3 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其中的“面積法”給了李明靈感,他驚喜地發(fā)現(xiàn);當(dāng)兩個全等的直角三角形如圖(1)擺放時可以利用面積法”來證明勾股定理,過程如下

如圖(1)∠DAB=90°,求證:a2+b2=c2

證明:連接DB,過點DDFBCBC的延長線于點F,則DF=b-a

S四邊形ADCB=

S四邊形ADCB=

化簡得:a2+b2=c2

請參照上述證法,利用“面積法”完成如圖(2)的勾股定理的證明,如圖(2)中∠DAB=90°,求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的解析式為y=﹣x+2,l1x軸交于點B,直線l2經(jīng)過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,

(1)求點C的坐標(biāo)及直線l2的解析式;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角中,已知,邊的垂直平分線交于點,交于點,且,,則的長是________

查看答案和解析>>

同步練習(xí)冊答案