【題目】如圖,四邊形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC,CD上分別找一點(diǎn)M,N,使△AMN周長(zhǎng)最小,請(qǐng)?jiān)趫D中畫出△AMN,寫出畫圖過程并直接寫出∠MAN的度數(shù).
【答案】作圖見解析,∠MAN的度數(shù)為40°.
【解析】
根據(jù)對(duì)稱性作點(diǎn)A關(guān)于BC和DC的對(duì)稱點(diǎn)E、F,連接EF,與BC和DC的交點(diǎn)為M和N,此時(shí)△AMN周長(zhǎng)最小,進(jìn)而可求得∠MAN的度數(shù).
解:如圖所示:
作點(diǎn)A關(guān)于BC和DC的對(duì)稱點(diǎn)E和F,
連接EF,與BC和DC相交于點(diǎn)M和N,
連接AM和AN,根據(jù)對(duì)稱性得:
AM=EM,AN=FN,
AM+AN+MN=EM+FN+MN=EF,
根據(jù)兩點(diǎn)之間線段最短,
此時(shí)△AMN的周長(zhǎng)最小,
∵∠BAD=110°,
∴∠E+∠F=180°﹣110°=70°,
∴∠EAM+∠FAN=70°,
∴∠MAN=∠EAF-(∠EAM+∠FAN)=40°.
答:∠MAN的度數(shù)為40°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y關(guān)于x的二次函數(shù)y=ax2﹣bx+2(a≠0).
(1)當(dāng)a=﹣2,b=﹣4時(shí),求該函數(shù)圖象的對(duì)稱軸及頂點(diǎn)坐標(biāo).
(2)在(1)的條件下,Q(m,t)為該函數(shù)圖象上的一點(diǎn),若Q關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P也落在該函數(shù)圖象上,求m的值.
(3)當(dāng)該函數(shù)圖象經(jīng)過點(diǎn)(1,0)時(shí),若A(,y1),B(,y2)是該函數(shù)圖象上的兩點(diǎn),試比較y1與y2的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在中,,于點(diǎn)D,點(diǎn)P在線段DB上,點(diǎn)M是邊AC的中點(diǎn),連結(jié)MP,作,點(diǎn)Q在邊BC上.若,則( )
A.當(dāng)時(shí),點(diǎn)P與點(diǎn)D重合
B.當(dāng)時(shí),
C.當(dāng)時(shí),
D.當(dāng)時(shí),
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線AB分別交x軸,y軸于A(a,0),B(0,b),且滿足a2+b2+4a﹣8b+20=0.
(1)求a,b的值;
(2)點(diǎn)P在直線AB的右側(cè);且∠APB=45°,
①若點(diǎn)P在x軸上(圖1),則點(diǎn)P的坐標(biāo)為 ;
②若△ABP為直角三角形,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長(zhǎng)為4,AD是BC邊上的中線,F是AD邊上的動(dòng)點(diǎn),E是AC邊上一點(diǎn).若AE=2,當(dāng)EF+CF取得最小值時(shí),∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE均為等邊三角形,CE,BD相交于點(diǎn)P,連接PA.
(1)求證:CE=BD;
(2)求證:PA平分∠BPE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ADE的頂點(diǎn)D,E分別在BC,AC上,且∠DAE=90°,AD=AE.若∠C+∠BAC=155°,則∠EDC的度數(shù)為( 。
A.20°B.20.5°C.21°D.22°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個(gè)頂點(diǎn)的坐標(biāo)分別為,,。
(1)請(qǐng)畫出關(guān)于軸對(duì)稱后得到的;
(2)直接寫出點(diǎn),點(diǎn),點(diǎn)的坐標(biāo);
(3)在軸上尋找一個(gè)點(diǎn),使的周長(zhǎng)最小,并直接寫出的周長(zhǎng)的最小值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠BAC的平分線與BC的垂直平分線DG相交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E、F,
(1)連接CD、BD,求證:△CDF≌△BDE;
(2)若AE=5,AC=3,求BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com