【題目】 交通工程學理論把在單向道路上行駛的汽車看成連續(xù)的流體,并用流量、速度、密度三個概念描述車流的基本特征,其中流量(輛/小時)指單位時間內(nèi)通過道路指定斷面的車輛數(shù);速度(千米/小時)指通過道路指定斷面的車輛速度,密度(輛/千米)指通過道路指定斷面單位長度內(nèi)的車輛數(shù).
為配合大數(shù)據(jù)治堵行動,測得某路段流量與速度之間關系的部分數(shù)據(jù)如下表:
速度(千米/小時) | … | 5 | 10 | 20 | 32 | 40 | 48 | … |
流量(輛/小時) | … | 550 | 1000 | 1600 | 1792 | 1600 | 1152 | … |
(1)根據(jù)上表信息,下列三個函數(shù)關系式中,刻畫,關系最準確的是____.(只填上正確答案的序號)
①;②;③.
(2)請利用(1)中選取的函數(shù)關系式分析,當該路段的車流速度為多少時,流量達到最大?最大流量是多少?
(3)已知滿足.請結(jié)合(1)中選取的函數(shù)關系式繼續(xù)解決下列問題.
①市交通運行監(jiān)控平臺顯示,當時道路出現(xiàn)輕度擁堵.試分析當車流密度在什么范圍時,該路段將出現(xiàn)輕度擁堵;
②在理想狀態(tài)下,假設前后兩車車頭之間的距離(米)均相等,求流量最大時的值.
【答案】(1)③(2)當v=30時,q最大=1800(3)①84<k≤96②流量最大時d的值為米.
【解析】
試題分析:(1)設q與v的函數(shù)關系式為q=av2+bv,依題可得二元一次方程組求出q與v的函數(shù)關系式,即可得出答案.
(2)由(1)得到的二次函數(shù)關系式,根據(jù)其圖像性質(zhì)即可求出答案.
(3)①根據(jù)q=vk即可得出v=-k+60代入12≤v<18即可求出k的范圍.
②根據(jù)v=30時,q最大=1800,再將v值代入v=-k+60求出k=60,從而得出d.
試題解析:(1)設q與v的函數(shù)關系式為q=av2+bv,依題可得:
,
解得,
∴q=-2v2+120v.
故答案為③.
(2)解:∵q=-2v2+120v=-2(v-30)2+1800.
∴當v=30時,q最大=1800.
(3)解:①∵q=vk,
∴k===-2v+120.
∴v=-k+60.
∵12≤v<18,
∴12≤-k+60<18.
解得:84<k≤96.
②∵當v=30時,q最大=1800.
又∵v=-k+60,
∴k=60.
∴d==.
∴流量最大時d的值為米.
科目:初中數(shù)學 來源: 題型:
【題目】邊長為6的等邊中,點、分別在、邊上, , .
(l)如圖1,將沿射線方向平移,得到,邊與的交點為,邊與的角平分線交于點.當多大時,四邊形為菱形?并說明理由.
(2)如圖2,將繞點旋轉(zhuǎn)(),得到,連接、,邊的中點為.
①在旋轉(zhuǎn)過程中,和有怎樣的數(shù)量關系?并說明理由.
②連接,當最大時,求的值.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在面積都相等的所有矩形中,當其中一個矩形的一邊長為1時,它的另一邊長為3.
(1)設矩形的相鄰兩邊長分別為x,y.
①求y關于x的函數(shù)表達式;
②當y≥3時,求x的取值范圍;
(2)圓圓說其中有一個矩形的周長為6,方方說有一個矩形的周長為10,你認為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅家最近新蓋了房子,室內(nèi)裝修時,木工師傅讓小紅爸爸去建材市場買一塊長3m,寬2.2m的薄木板用來做家居面,到了市場爸爸看到滿足這個尺寸的木板有點大,買還是不買爸爸猶豫了,因為他知道他家門框高只有2m,寬只有1m,他不知道這塊木板買回家后能不能完整的通過自家門框.請你替小紅爸爸解決一下難題,幫他算一算要買的木板能否通過自家門框進入室內(nèi).(備用圖可供做題參考,薄木板厚度可以忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BD平分∠ABC,
(1)作圖:作BC邊的垂直平分線分別交BC,BD于點E,F(xiàn)(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);
(2)在(1)的條件下,連接CF,若∠A=60°,∠ABD=24°,求∠ACF的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com