【題目】已知,如圖,在矩形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,過點(diǎn)CBD的平行線,過點(diǎn)DAC的平行線,兩線交于點(diǎn)P

求證:四邊形CODP是菱形.

AD6,AC10,求四邊形CODP的面積.

【答案】①證明見解析;(2)S菱形CODP24.

【解析】

根據(jù)DPAC,CPBD,即可證出四邊形CODP是平行四邊形,由矩形的性質(zhì)得出OC=OD,即可得出結(jié)論;

利用SCODS菱形CODP,先求出SCOD,即可得.

證明:①∵DPACCPBD

∴四邊形CODP是平行四邊形,

∵四邊形ABCD是矩形,

BDACODBD,OCAC

ODOC,

∴四邊形CODP是菱形.

②∵AD6,AC10

DC8

AOCO,

SCODSADC××AD×CD12

∵四邊形CODP是菱形,

SCODS菱形CODP12,

S菱形CODP24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CADEOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在茶節(jié)期間,某茶商訂購了甲種茶葉90噸,乙種茶葉80噸,準(zhǔn)備用AB兩種型號(hào)的貨車共20輛運(yùn)往外地.已知A型貨車每輛運(yùn)費(fèi)為0.4萬元,B型貨車每輛運(yùn)費(fèi)為0.6萬元.13分)

1)設(shè)A型貨車安排x輛,總運(yùn)費(fèi)為y萬元,寫出yx的函數(shù)關(guān)系式;

2)若一輛A型貨車可裝甲種茶葉6噸,乙種茶葉2噸;一輛B型貨車可裝甲種茶葉3噸,乙種茶葉7噸.按此要求安排AB兩種型號(hào)貨車一次性運(yùn)完這批茶葉,共有哪幾種運(yùn)輸方案?

3)說明哪種方案運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的弦,OP⊥OAAB于點(diǎn)P,過點(diǎn)B的直線交OP的延長線于點(diǎn)C,且CP=CB

1)求證:BC⊙O的切線;

2)若⊙O的半徑為,OP=1,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形AEHC是由三個(gè)全等矩形拼成的,AHBE、BF、DFDG、CG分別交于點(diǎn)PQ、KM、N.設(shè)△BPQ,△DKM,△CNH的面積依次為S1,S2S3.若S1+S320,則S2的值為( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸相交于原點(diǎn)和點(diǎn),點(diǎn)在拋物線上.

1)求拋物線的表達(dá)式,并寫出它的對(duì)稱軸;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)DE分別是邊BC,AC的中點(diǎn),連接DE. △EDC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.

1)問題發(fā)現(xiàn)

當(dāng)時(shí),;當(dāng)時(shí),

2)拓展探究

試判斷:當(dāng)0°≤α360°時(shí),的大小有無變化?請(qǐng)僅就圖2的情況給出證明.

3)問題解決

當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫出線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)延長線上一點(diǎn),連接,過分別作,垂足為,交于點(diǎn),作,垂足為,交于點(diǎn)

1)求證:;

2)如圖,點(diǎn)的延長線上,且,連接并延長交于點(diǎn),求證:;

3)在(2)的條件下,當(dāng)時(shí),請(qǐng)直接寫出的值為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是矩形,連接AC,點(diǎn)E是邊CB延長線上一點(diǎn),CA=CE,連接AE,F(xiàn)是線段AE的中點(diǎn),

(1)如圖1,當(dāng)AD=DC時(shí),連接CFABM,求證:BM=BE;

(2)如圖2,連接BDACO,連接DF分別交AB、ACG、H,連接GC,若∠FDB=30°,S四邊形GBOH=,求線段GC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案