如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點(diǎn)在第一象限,A點(diǎn)坐標(biāo)為(1,0),△OCD與△OAB關(guān)于y軸對(duì)稱。

(1)求經(jīng)過D,O,B三點(diǎn)的拋物線的解析式;
(2)若將△OAB向上平移k(k>0)個(gè)單位至△O′A′B(如圖乙),則經(jīng)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸在y軸的______。(填“左側(cè)”或“右側(cè)”)
(3)在(2)的條件下,設(shè)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸為直線x=m,求當(dāng)k為何值時(shí),|m|=?
解:(1)由題意可知:經(jīng)過D,O,B三點(diǎn)的拋物線的頂點(diǎn)是原點(diǎn),
故可設(shè)所求拋物線的解析式為

∴B點(diǎn)坐標(biāo)為
在拋物線上


∴經(jīng)過D,O,B三點(diǎn)的拋物線解析式是。
(2)左側(cè);
(3)由題意得:點(diǎn)的坐標(biāo)為,拋物線過原點(diǎn),故可設(shè)拋物線解析式為,
拋物線經(jīng)過點(diǎn)和點(diǎn)

解得,
∵拋物線對(duì)稱軸必在y軸的左側(cè)





即當(dāng)時(shí),。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點(diǎn)在第一象限,A點(diǎn)坐標(biāo)為(1,0).△OCD與△OAB關(guān)于y軸對(duì)稱.
(1)求經(jīng)過D,O,B三點(diǎn)的拋物線的解析式;
(2)若將△OAB向上平移k(k>0)個(gè)單位至△O′A′B(如圖乙),則經(jīng)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸在y軸的
 
.(填“左側(cè)”或“右側(cè)”)
(3)在(2)的條件下,設(shè)過D,O,B′三點(diǎn)的精英家教網(wǎng)拋物線的對(duì)稱軸為直線x=m.求當(dāng)k為何值時(shí),|m|=
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點(diǎn)在第一象限,A點(diǎn)坐標(biāo)為(1,0).△OCD與△OAB關(guān)于y軸對(duì)稱.
(1)求經(jīng)過D,O,B三點(diǎn)的拋物線的解析式;
(2)若將△OAB向上平移k(k>0)個(gè)單位至△O′A′B(如圖乙),則經(jīng)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸在y軸的(    ).(填“左側(cè)”或“右側(cè)”)
(3)在(2)的條件下,設(shè)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸為直線x=m.求當(dāng)k為何值時(shí),|m|=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖甲,在等腰直角三角形中,,點(diǎn)在第一象限,點(diǎn)坐標(biāo)為,關(guān)于軸對(duì)稱.

(1)求經(jīng)過三點(diǎn)的拋物線的解析式;

(2)若將向上平移個(gè)單位至(如圖乙),則經(jīng)過三點(diǎn)的拋物線的對(duì)稱軸在軸的        .(填“左側(cè)”或“右側(cè)”)

(3)在(2)的條件下,設(shè)過三點(diǎn)的拋物線的對(duì)稱軸為直線.求當(dāng)為何值時(shí),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年浙江省杭州市蕭山區(qū)中考模擬數(shù)學(xué)試卷(河上鎮(zhèn)中 董國琦)(解析版) 題型:解答題

(2008•湖州)如圖甲,在等腰直角三角形OAB中,∠OAB=90°,B點(diǎn)在第一象限,A點(diǎn)坐標(biāo)為(1,0).△OCD與△OAB關(guān)于y軸對(duì)稱.
(1)求經(jīng)過D,O,B三點(diǎn)的拋物線的解析式;
(2)若將△OAB向上平移k(k>0)個(gè)單位至△O′A′B(如圖乙),則經(jīng)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸在y軸的______.(填“左側(cè)”或“右側(cè)”)
(3)在(2)的條件下,設(shè)過D,O,B′三點(diǎn)的拋物線的對(duì)稱軸為直線x=m.求當(dāng)k為何值時(shí),|m|=

查看答案和解析>>

同步練習(xí)冊(cè)答案