【題目】如圖,已知點D為等腰直角△ABC內(nèi)一點,∠ACB90°,ADBD,∠BAD30°,EAD延長線上的一點,且CECA,若點MDE上,且DCDM.則下列結(jié)論中:①∠ADB120°;②△ADC≌△BDC;③線段DC所在的直線垂直平分線AB;④MEBD;正確的有(  )

A.1B.2C.3D.4

【答案】D

【解析】

由等腰三角形的性質(zhì)可判斷①,由“SSS”可證ADC≌△BDC,可判斷②,由全等三角形的性質(zhì)和等腰三角形的性質(zhì)可判斷③,由“AAS”可證ACD≌△ECM,可判斷④.

解:∵AD=BD,∠BAD=30°

∴∠BAD=ABD=30°,

∴∠ADB=120°,

故①正確;

AC=BC,AD=BDCD=CD,

∴△ADC≌△BDCSSS,

故②正確;

∵△ADC≌△BDC

∴∠ACD=BCD,且AC=BC

∴線段DC所在的直線垂直平分線AB,

故③正確;

∵△ABC是等腰直角三角形,

∴∠CAB=CBA,

∴∠CAD=CBD=15°,

CA=CE,

∴∠E=CAD=15°,

∵∠EDC=DAC+DCA=60°,且CD=CM,

∴∠CDE=CMD=60°,

∴∠ADC=CME=120°,且∠E=CADAC=CE,

∴△ACD≌△ECMAAS,

AD=ME=BD,

故④正確,

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知等邊△ABC,點D和點B關(guān)于直線AC軸對稱.點M(不同于點A和點C)在射線CA上,線段DM的垂直平分線交直線BC的于N,

1)如圖,過點DDE⊥BC,交BC的延長線于E,若CE5,BC的長;

2)如圖,若點M在線段AC上,求證:△DMN為等邊三角形;

3)連接CD,BM,若,直接寫出

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy,過⊙C上一點P作⊙C的切線l.當入射光線照射在點P處時,產(chǎn)生反射,且滿足反射光線與切線l的夾角和入射光線與切線l的夾角相等,P稱為反射點.規(guī)定光線不能“穿過”⊙C,即當入射光線在⊙C外時,只在圓外進行反射;當入射光線在⊙C內(nèi)時,只在圓內(nèi)進行反射.特別地圓的切線不能作為入射光線和反射光線.光線在⊙C外反射的示意圖如圖1所示,其中∠1=∠2

1)自⊙C內(nèi)一點出發(fā)的入射光線經(jīng)⊙C第一次反射后的示意圖如圖2所示,P1是第1個反射點.請在圖2中作出光線經(jīng)⊙C第二次反射后的反射光線和反射點P3

2)當⊙O的半徑為1,如圖3

①第一象限內(nèi)的一條入射光線平行于y且自⊙O的外部照射在圓上點P,此光線經(jīng)⊙O反射后,反射光線與x軸平行則反射光線與切線l的夾角為___________°;

②自點M0,1)出發(fā)的入射光線在⊙O內(nèi)順時針方向不斷地反射.若第1個反射點是P1,第二個反射點是P2,以此類推8個反射點是P8恰好與點M重合,則第1個反射點P1的坐標為___________

3)如圖4M的坐標為(0,2),M的半徑為1.第一象限內(nèi)自點O出發(fā)的入射光線經(jīng)⊙M反射后,反射光線與坐標軸無公共點,求反射點P的縱坐標的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線ABx軸、y軸相交于、兩點,動點C在線段OA上(不與OA重合),將線段CB繞著點C順時針旋轉(zhuǎn)得到CD,當點D恰好落在直線AB上時,過點D軸于點E.

1)求證,;

2)如圖2,將沿x軸正方向平移得,當直線經(jīng)過點D時,求點D的坐標及平移的距離;

3)若點Py軸上,點Q在直線AB上,是否存在以C、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,補充下列結(jié)論和依據(jù).

∵∠ACE∠D(已知),

∴_____∥______(______________________ )

∵∠ACE∠FEC(已知),

∴______∥______(_ ___ _______)

∵∠AEC∠BOC(已知),

∴_____∥______(___ _____________________)

∵∠BFD∠FOC180°(已知),

∴_____∥______(_____ ____________________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019516日,第十五屆文博會在深圳拉開帷幕,周末,小明騎共享單車從家里出發(fā)去分會館參觀,途中突然發(fā)現(xiàn)鑰匙不見了,于是原路折返,在剛才等紅綠燈的路口找到了鑰匙,便繼續(xù)前往分會館,設(shè)小明從家里出發(fā)到分會場所用的時間為x(分鐘),離家的距離為y(米),且xy的關(guān)系示意圖如圖所示,請根據(jù)圖中提供的信息回答下列問題:

1)圖中自變量是   .因變量是   

2)小明等待紅綠燈花了   分鐘.

3)小明的家距離分會館   

4)小明在   時間段的騎行速度最快,最快速度是   /分鐘.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,點,,分別是邊,,上的點,且,相交于點,若點的重心.則以下結(jié)論:①線段,,的三條角平分線;②的面積是面積的一半;③圖中與面積相等的三角形有5個;④的面積是面積的.其中一定正確的結(jié)論有(

A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB24,BC26,CA14.順次連接△ABC各邊中點,得到△A1B1C1;再順次連接△A1B1C1各邊中點,得到△A2B2C2…如此進行下去,得到,則△A8B8C8的周長為(  )

A.1B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解“陽光體育”活動的開展情況,從全校2000名學生中,隨機抽取部分學生進行問卷調(diào)查(每名學生只能填寫一項自己喜歡的活動項目),并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息,解答下列問題:

(1)被調(diào)查的學生共有   人,并補全條形統(tǒng)計圖;

(2)在扇形統(tǒng)計圖中,m= ,n=   ,表示區(qū)域C的圓心角為  度;

(3)全校學生中喜歡籃球的人數(shù)大約有

查看答案和解析>>

同步練習冊答案