【題目】如圖,四邊形ABCD為一個矩形紙片,AB=3,BC=2,動點P自D點出發(fā)沿DC方向運動至C點后停止,△ADP以直線AP為軸翻折,點D落在點D1的位置,設(shè)DP=x,△AD1P與原紙片重疊部分的面積為y.

(1)當(dāng)x為何值時,直線AD1過點C?
(2)當(dāng)x為何值時,直線AD1過BC的中點E?
(3)求出y與x的函數(shù)表達(dá)式.

【答案】
(1)

解:

如圖1,∵由題意得:△ADP≌△AD1P,

∴AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,

∵直線AD1過C,

∴PD1⊥AC,

在Rt△ABC中,AC= = ,CD1= ﹣2,

在Rt△PCD1中,PC2=PD12+CD12,

即(3﹣x)2=x2+( ﹣2)2,

解得:x= ,

∴當(dāng)x= 時,直線AD1過點C


(2)

解:如圖2,

連接PE,

∵E為BC的中點,

∴BE=CE=1,

在Rt△ABE中,AE= = ,

∵AD1=AD=2,PD=PD1=x,

∴D1E= ﹣2,PC=3﹣x,

在Rt△PD1E和Rt△PCE中,

x2+( ﹣2)2=(3﹣x)2+12,

解得:x= ,

∴當(dāng)x= 時,直線AD1過BC的中點E;


(3)

解:如圖3,

當(dāng)0<x≤2時,y=x,

如圖4,

當(dāng)2<x≤3時,點D1在矩形ABCD的外部,PD1交AB于F,

∵AB∥CD,

∴∠1=∠2,

∵∠1=∠3(根據(jù)折疊),

∴∠2=∠3,

∴AF=PF,

作PG⊥AB于G,

設(shè)PF=AF=a,

由題意得:AG=DP=x,F(xiàn)G=x﹣a,

在Rt△PFG中,由勾股定理得:(x﹣a)2+22=a2,

解得:a= ,

所以y= =

綜合上述,當(dāng)0<x≤2時,y=x;當(dāng)2<x≤3時,y=


【解析】(1)根據(jù)折疊得出AD=AD1=2,PD=PD1=x,∠D=∠AD1P=90°,在Rt△ABC中,根據(jù)勾股定理求出AC,在Rt△PCD1中,根據(jù)勾股定理得出方程,求出即可;(2)連接PE,求出BE=CE=1,在Rt△ABE中,根據(jù)勾股定理求出AE,求出AD1=AD=2,PD=PD1=x,D1E= ﹣2,PC=3﹣x,在Rt△PD1E和Rt△PCE中,根據(jù)勾股定理得出方程,求出即可;(3)分為兩種情況:當(dāng)0<x≤2時,y=x;當(dāng)2<x≤3時,點D1在矩形ABCD的外部,PD1交AB于F,求出AF=PF,作PG⊥AB于G,設(shè)PF=AF=a,在Rt△PFG中,由勾股定理得出方程(x﹣a)2+22=a2 , 求出a即可.
【考點精析】掌握全等三角形的性質(zhì)和勾股定理的概念是解答本題的根本,需要知道全等三角形的對應(yīng)邊相等; 全等三角形的對應(yīng)角相等;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應(yīng)值如表

x

﹣1

0

1

3

y

﹣1

3

5

3

下列結(jié)論:①ac<0;②當(dāng)x>1時,y的值隨x值的增大而減小.
③當(dāng)x=2時,y=5;④3是方程ax2+(b﹣1)x+c=0的一個根;
其中正確的有 . (填正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y= 的圖象如圖所示,點P是y軸負(fù)半軸上一動點,過點P作y軸的垂線交圖象于A,B兩點,連接OA、OB.下列結(jié)論:
①若點M1(x1 , y1),M2(x2 , y2)在圖象上,且x1<x2<0,則y1<y2;
②當(dāng)點P坐標(biāo)為(0,﹣3)時,△AOB是等腰三角形;
③無論點P在什么位置,始終有S△AOB=7.5,AP=4BP;
④當(dāng)點P移動到使∠AOB=90°時,點A的坐標(biāo)為(2 ,﹣ ).
其中正確的結(jié)論個數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD中,AD∥BC,AD=CD,E是對角線BD上一點,且EA=EC.
(1)求證:四邊形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A點的坐標(biāo)為(﹣1,5),B點的坐標(biāo)為(3,3),C點的坐標(biāo)為(5,3),D點的坐標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點旋轉(zhuǎn)一個角度可以得到另一條線段,你認(rèn)為這個旋轉(zhuǎn)中心的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)解不等式組:
(2)化簡:( ﹣a)÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)和形是數(shù)學(xué)的兩個主要研究對象,我們經(jīng)常運用數(shù)形結(jié)合、數(shù)形轉(zhuǎn)化的方法解決一些數(shù)學(xué)問題.下面我們來探究“由數(shù)思形,以形助數(shù)”的方法在解決代數(shù)問題中的應(yīng)用.
(1)探究一:求不等式|x﹣1|<2的解集
探究|x﹣1|的幾何意義
如圖①,在以O(shè)為原點的數(shù)軸上,設(shè)點A′對應(yīng)的數(shù)是x﹣1,有絕對值的定義可知,點A′與點O的距離為|x﹣1|,可記為A′O=|x﹣1|.將線段A′O向右平移1個單位得到線段AB,此時點A對應(yīng)的數(shù)是x,點B對應(yīng)的數(shù)是1.因為AB=A′O,所以AB=|x﹣1|,因此,|x﹣1|的幾何意義可以理解為數(shù)軸上x所對應(yīng)的點A與1所對應(yīng)的點B之間的距離AB.

探究求方程|x﹣1|=2的解
因為數(shù)軸上3和﹣1所對應(yīng)的點與1所對應(yīng)的點之間的距離都為2,所以方程的解為3,﹣1.
探究:
求不等式|x﹣1|<2的解集
因為|x﹣1|表示數(shù)軸上x所對應(yīng)的點與1所對應(yīng)的點之間的距離,所以求不等式解集就轉(zhuǎn)化為求這個距離小于2的點對應(yīng)的數(shù)x的范圍.
請在圖②的數(shù)軸上表示|x﹣1|<2的解集,并寫出這個解集.

(2)探究二:探究 的幾何意義
探究:
的幾何意義
如圖③,在直角坐標(biāo)系中,設(shè)點M的坐標(biāo)為(x,y),過M作MP⊥x軸于P,作MQ⊥y軸于Q,則P點坐標(biāo)為(x,0),Q點坐標(biāo)為(0,y),OP=|x|,OQ=|y|,在Rt△OPM中,PM=OQ=|y|,則MO= = = ,因此, 的幾何意義可以理解為點M(x,y)與點O(0,0)之間的距離MO.

探究:
的幾何意義
如圖④,在直角坐標(biāo)系中,設(shè)點A′的坐標(biāo)為(x﹣1,y﹣5),由探究二(1)可知,A′O= ,將線段A′O先向右平移1個單位,再向上平移5個單位,得到線段AB,此時點A的坐標(biāo)為(x,y),點B的坐標(biāo)為(1,5),因為AB=A′O,所以AB= ,因此 的幾何意義可以理解為點A(x,y)與點B(1,5)之間的距離AB.

探究 的幾何意義
①請仿照探究二的方法,在圖⑤中畫出圖形,并寫出探究過程.
的幾何意義可以理解為:

(3)拓展應(yīng)用:
+ 的幾何意義可以理解為:點A(x,y)與點E(2,﹣1)的距離和點A(x,y)與點F(填寫坐標(biāo))的距離之和.
+ 的最小值為(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校園廣播主持人培訓(xùn)班開展比賽活動,分為 A、B、C、D四個等級,對應(yīng)的成績分別是9分、8分、7分、6分,根據(jù)如圖不完整的統(tǒng)計圖解答下列問題:
(1)補全下面兩個統(tǒng)計圖(不寫過程);
(2)求該班學(xué)生比賽的平均成績;
(3)現(xiàn)準(zhǔn)備從等級A的4人(兩男兩女)中隨機抽取兩名主持人,請利用列表或畫樹狀圖的方法,求恰好抽到一男一女學(xué)生的概率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在邊長為2的正三角形ABC中,E、F、G分別為AB、AC、BC的中點,點P為線段EF上一個動點,連接BP、GP,則△BPG的周長的最小值是

查看答案和解析>>

同步練習(xí)冊答案