在數(shù)學(xué)活動(dòng)課上,小明做了一個(gè)梯形紙板,測(cè)得一底邊長(zhǎng)為7 cm,高為12 cm,兩腰長(zhǎng)分別為15 cm和20 cm,則該梯形紙板的另一底邊長(zhǎng)為    cm.
【答案】分析:分為兩種情況:①當(dāng)上底AD=7時(shí),過(guò)A作AE⊥BC于E,過(guò)D作DF⊥BC于F,得出矩形AEFD,推出AD=EF=7,AE=DF=12,根據(jù)勾股定理求出BE、CF,即可求出答案;②當(dāng)下底BC=7時(shí),與①求法類(lèi)似,得出矩形AEFD,根據(jù)勾股定理求出BE、CF,求出AD即可.
解答:解:分為兩種情況:
①當(dāng)上底AD是7時(shí),如圖
過(guò)A作AE⊥BC于E,過(guò)D作DF⊥BC于F,
則AE∥DF,
∵AD∥BC,
∴四邊形AEFD是平行四邊形,
∵∠AEF=90°,
∴平行四邊形AEFD是矩形,
∴AD=EF=7,AE=DF=12,
在Rt△ABE和Rt△DFC中,由勾股定理得:BE==9,CF==16,
∴BC=9+7+16=32(cm);
②當(dāng)下底BC=7時(shí),如圖
過(guò)A作AE⊥CB,交CB的延長(zhǎng)線于E,過(guò)D作DF⊥CB,交CB的延長(zhǎng)線于F,
則AE∥DF,
∵AD∥BC,
∴四邊形AEFD是平行四邊形,
∵∠AEF=90°,
∴平行四邊形AEFD是矩形,
∴AD=EF,AE=DF=12,
在Rt△ABE和Rt△DFC中,由勾股定理得:CF==9,BE==16,
∴AD=EF=BE-(CF-CB)=16-(9-7)═14(cm)
故答案為32cm或14cm.
點(diǎn)評(píng):此題主要是作兩條高,得出平行四邊形和三角形.熟練運(yùn)用勾股定理,注意能夠考慮不同的圖形的情況.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、在數(shù)學(xué)活動(dòng)課上,小明提出一個(gè)問(wèn)題:“如圖,在四邊形ABCD中,∠B=∠C=90°,M是BC的中點(diǎn),DM平分∠ADC,∠CMD=35°,則∠MAB是多少度”大家經(jīng)過(guò)了一番熱烈的討論交流之后,小雨第一個(gè)得出了正確結(jié)論,你知道他說(shuō)的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)在數(shù)學(xué)活動(dòng)課上,小明同學(xué)設(shè)計(jì)了一個(gè)計(jì)算程序,
(1)當(dāng)輸入x=2時(shí),輸出的y=
 
;
(2)當(dāng)輸入x=8時(shí),輸出的y=
 
;
(3)請(qǐng)?jiān)谥苯亲鴺?biāo)系中,把小明同學(xué)設(shè)計(jì)的計(jì)算程序用函數(shù)圖象表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、在數(shù)學(xué)活動(dòng)課上,小明做了一個(gè)梯形紙板,測(cè)得一底邊長(zhǎng)為7 cm,高為12 cm,兩腰長(zhǎng)分別為15 cm和20 cm,則該梯形紙板的另一底邊長(zhǎng)為
32
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:如圖,∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CED=35°,則∠EAB的度數(shù)是
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)學(xué)活動(dòng)課上,小明提出這樣一個(gè)問(wèn)題:如圖,∠B=∠C=90°,E是BC的中點(diǎn),DE平分∠ADC,∠CED=35°,則∠EAB的度數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案