分析 如圖,作OH⊥AB于H,連接OA、OB,∠C和∠C′為AB所對(duì)的圓周角,根據(jù)垂徑定理得到AH=BH=$\frac{1}{2}$AB=$\frac{\sqrt{3}}{2}$,則利用余弦的定義可得到∠OAH=30°,接著根據(jù)三角形內(nèi)角和可計(jì)算出∠AOB=120°,然后根據(jù)圓周角定理和圓內(nèi)接四邊形的性質(zhì)求出∠C和∠C′的度數(shù)即可.
解答 解:如圖,作OH⊥AB于H,連接OA、OB,∠C和∠C′為AB所對(duì)的圓周角,
∵OH⊥AB,
∴AH=BH=$\frac{1}{2}$AB=$\frac{\sqrt{3}}{2}$,
在Rt△OAH中,∵cos∠OAH=$\frac{AH}{OA}$=$\frac{\sqrt{3}}{2}$,
∴∠OAH=30°,
∴∠AOB=180°-60°=120°,
∴∠C=$\frac{1}{2}$∠AOB=60°,
∴∠C′=180°-∠C=120°,
即弦AB所對(duì)的圓周角為60°或120°.
故答案為60°或120°.
點(diǎn)評(píng) 本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半.推論:半圓(或直徑)所對(duì)的圓周角是直角,90°的圓周角所對(duì)的弦是直徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-x | B. | |y|=2x | C. | y=|2x| | D. | y=2x2+4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 3 | D. | 3$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com