【題目】如圖,⊙O與Rt△ABC的直角邊AC和斜邊AB分別相切于點C、D,與邊BC相交于點F,OA與CD相交于點E,連接FE并延長交AC邊于點G.
(1)求證:DF∥AO;
(2)若AC=6,AB=10,求CG的長.
【答案】
(1)證明:連接OD.
∵AB與⊙O相切與點D,又AC與⊙O相切與點,
∴AC=AD,∵OC=OD,
∴OA⊥CD,
∴CD⊥OA,
∵CF是直徑,
∴∠CDF=90°,
∴DF⊥CD,
∴DF∥AO.
(2)過點作EM⊥OC于M,
∵AC=6,AB=10,
∴BC= =8,
∴AD=AC=6,
∴BD=AB﹣AD=4,
∵BD2=BFBC,
∴BF=2,
∴CF=BC﹣BF=6.OC= CF=3,
∴OA= =3 ,
∵OC2=OEOA,
∴OE= ,
∵EM∥AC,
∴ = = = ,
∴OM= ,EM= ,FM=OF+OM= ,
∴ = = = ,
∴CG= EM=2.
【解析】(1)欲證明DF∥OA,只要證明OA⊥CD,DF⊥CD即可;(2)過點作EM⊥OC于M,易知 = ,只要求出EM、FM、FC即可解決問題;
【考點精析】掌握切線的性質定理是解答本題的根本,需要知道切線的性質:1、經過切點垂直于這條半徑的直線是圓的切線2、經過切點垂直于切線的直線必經過圓心3、圓的切線垂直于經過切點的半徑.
科目:初中數學 來源: 題型:
【題目】問題:探究一次函數y=kx+k+2(k是不為0常數)圖象的共性特點,探究過程:小明嘗試把x=﹣1代入時,發(fā)現可以消去k,竟然求出了y=2.老師問:結合一次函數圖象,這說明了什么?小組討論得出:無論k取何值,一次函數y=kx+k+2的圖象一定經過定點(﹣1,2),老師:如果一次函數的圖象是經過某一個定點的直線,那么我們把像這樣的一次函數的圖象定義為“點旋轉直線”.已知一次函數y=(k+3)x+(k﹣1)的圖象是“點選直線”
(1)一次函數y=(k+3)x+(k﹣1)的圖象經過的頂點P的坐標是 .
(2)已知一次函數y=(k+3)x+(k﹣1)的圖象與x軸、y軸分別相交于點A、B
①若△OBP的面積為3,求k值;
②若△AOB的面積為1,求k值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=ax+b(a≠0)的圖象與反比例函數y= (k≠0)的圖象交于A、B兩點,與x軸交于點C,過點A作AH⊥x軸于點H,點O是線段CH的中點,AC=4 ,cos∠ACH= ,點B的坐標為(4,n)
(1)求該反比例函數和一次函數的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】計算(直接寫出結果):
(1)﹣2+5
(2)﹣17+(﹣3)
(3)(﹣10)﹣(-6)
(4)(﹣1)×(﹣12)
(5)﹣2×(﹣3)2
(6)﹣1÷(﹣5)
(7)﹣1200+(﹣1)200
(8)﹣0.125×(﹣2)3
(9)|﹣|
(10)(-)3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數分別用正、負數來表示,記錄如下:
與標準質量的差值(單位:千克) | ||||||
筐 數 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐重______千克;
(2)與標準重量比較,20筐白菜總計超過或不足多少千克?
(3)若白菜每千克售價元,則出售這20筐白菜可賣多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學課上,張老師出示了問題:如圖1,AC,BD是四邊形ABCD的對角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關系?
經過思考,小明展示了一種正確的思路:如圖2,延長CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點A逆時針旋轉60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎上,同學們作了進一步的研究:
(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關系?針對小穎提出的問題,請你寫出結論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關系?針對小華提出的問題,請你寫出結論,不用證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B、與y軸交于點A,與反比例函數y= 的圖象在第二象限交于C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數的解析式;
(2)若點D是反比例函數圖象在第四象限內的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果S△BAF=4S△DFO , 求點D的坐標.
(3)若動點D在反比例函數圖象的第四象限上運動,當線段DC與線段DB之差達到最大時,求點D的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com