【題目】如圖,已知直線,分別是直線上的點(diǎn).
(1)在圖1中,判斷和之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)在圖2中,請(qǐng)你直接寫(xiě)出和之間的數(shù)量關(guān)系(不需要證明);
(3)在圖3中,平分,平分,且,求的度數(shù).
【答案】(1),證明見(jiàn)析;(2);(3)
【解析】
(1)如圖,過(guò)點(diǎn)作直線,由平行線的性質(zhì)得到,,即可求得;
(2)如圖,記AB與NE的交點(diǎn)為G,由平行線的性質(zhì)得∠EGM=∠DNE,由三角形外角性質(zhì)得∠BME=∠MEN+∠EGM,由此即可得到結(jié)論;
(3)由角平分線的定義設(shè),設(shè),由(1),得,由(2),得,再根據(jù),可求得,繼而可求得.
(1),證明如下:
如圖,過(guò)點(diǎn)作直線,
∵,
∴,
又∵,
∴,
∴,
∴;
(2),理由如下:
如圖,記AB與NE的交點(diǎn)為G,
又∵AB//CD,
∴∠EGM=∠DNE,
∵∠BME是△EMG的外角,
∴∠BME=∠MEN+∠EGM,
∴∠MEN=∠BME-∠DNE;
(3)∵平分,
∴設(shè),
∵平分,
∴設(shè),
由(1),得,
由(2),得,
又∵,
∴,
∴,
即,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一副三角板如圖擺放,點(diǎn)F是 45°角三角板△ABC的斜邊的中點(diǎn),AC=4.當(dāng) 30°角三角板DEF的直角頂點(diǎn)繞著點(diǎn)F旋轉(zhuǎn)時(shí),直角邊DF,EF分別與AC,BC相交于點(diǎn) M, N.在旋轉(zhuǎn)過(guò)程中有以下結(jié)論:①MF=NF;②CF與MN可能相等嗎;③MN 長(zhǎng)度的最小值為 2;④四邊形CMFN的面積保持不變; ⑤△CMN面積的最大值為 2.其中正確的個(gè)數(shù)是_________.(填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為提高飲水質(zhì)量,越來(lái)越多的居民選購(gòu)家用凈水器.我市飛龍商場(chǎng)抓住商機(jī),從廠家購(gòu)進(jìn)了A、B兩種型號(hào)家用凈水器共100臺(tái),A型號(hào)家用凈水器進(jìn)價(jià)是150元/臺(tái),B型號(hào)家用凈水器進(jìn)價(jià)是250元/臺(tái),購(gòu)進(jìn)兩種型號(hào)的家用凈水器共用去19000 元.
(1)求A、B兩種型號(hào)家用凈水器各購(gòu)進(jìn)了多少臺(tái);
(2)為使每臺(tái)B型號(hào)家用凈水器的毛利潤(rùn)是A型號(hào)的2倍,且保證售完這100臺(tái)家用凈水器的毛利潤(rùn)不低于5600元,求每臺(tái)A型號(hào)家用凈水器的售價(jià)至少是多少元? (注: 毛利潤(rùn)=售價(jià)一進(jìn)價(jià)) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3 在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=a,則△A6B6A7的邊長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)類(lèi)比聯(lián)想、引申拓展研究典型題目,可達(dá)到解一題知一類(lèi)的目的.下面是一個(gè)案例,請(qǐng)補(bǔ)充完整.
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.
(1)思路梳理
∵AB=CD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù)___________,SAS
易證△AFG≌___________△AEF
,得EF=BE+DF.
(2)類(lèi)比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°.點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿(mǎn)足等量關(guān)系______________∠B+∠D=180°
時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿(mǎn)足的等量關(guān)系,并寫(xiě)出推理過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把1°的圓心角所對(duì)的弧叫做1°的弧,則圓心角AOB的度數(shù)等于它所對(duì)的弧AB的度數(shù)記為:∠AOB .由此可知:命題“圓周角的度數(shù)等于其所對(duì)的弧的度數(shù)的一半.”是真命題,請(qǐng)結(jié)合圖形1給予證明(不要求寫(xiě)已知、求證,只需直接證明),并解決以下的問(wèn)題(1)和問(wèn)題(2).
問(wèn)題(1):如圖2,⊙O的兩條弦AB、CD相交于圓內(nèi)一點(diǎn)P,求證:∠APC (+);
問(wèn)題(2):如圖3,⊙O的兩條弦AB、CD相交于圓外一點(diǎn)P,問(wèn)題(1)中的結(jié)論是否成立,如果成立,給予證明;如果不成立,寫(xiě)出一個(gè)類(lèi)似的結(jié)論(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形(四邊相等,四個(gè)角都是直角),點(diǎn)為邊上異于點(diǎn)的一動(dòng)點(diǎn),,交于點(diǎn),點(diǎn)為延長(zhǎng)線上一定點(diǎn),滿(mǎn)足,的延長(zhǎng)線與交于點(diǎn),連接.
(1)判斷是 三角形.
(2)求證: ≌.
(3)探究是否為定值?如果是定值,請(qǐng)說(shuō)明理由,并求出該定值;如果不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解學(xué)生的課外閱讀情況,隨機(jī)抽取了50名學(xué)生,并統(tǒng)計(jì)他們平均每天的課外閱讀時(shí)間t(單位:min),然后利用所得數(shù)據(jù)繪制成如下不完整的統(tǒng)計(jì)表.
課外閱讀時(shí)間t | 頻數(shù) | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合計(jì) | 50 | 100% |
請(qǐng)根據(jù)圖表中提供的信息回答下列問(wèn)題:
(1)a= ,b= ;
(2)將頻數(shù)分布直方圖補(bǔ)充完整;
(3)若全校有900名學(xué)生,估計(jì)該校有多少學(xué)生平均每天的課外閱讀時(shí)間不少于50min?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點(diǎn)M是邊BC上一點(diǎn),BM=3,點(diǎn)N是線段MC上的一個(gè)動(dòng)點(diǎn),連接DN,ME,DN與ME相交于點(diǎn)O.若△OMN是直角三角形,則DO的長(zhǎng)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com