【題目】重慶移動為了提升新型冠狀肺炎停課不停學期間某片區(qū)網(wǎng)絡信號,保證廣大師生網(wǎng)絡授課、聽課的質量,臨時在坡度為的山坡上加裝了信號塔(如圖所示),信號塔底端到坡底的距離為3.9米.同時為了提醒市民,在距離斜坡底4.4米的水平地面上立了一塊警示牌.當太陽光線與水平線成53°角時,測得信號塔落在警示牌上的影子長為3米,則信號塔的高約為(tan53°≈1.3)( .

A.10.4B.11.9C.11.4D.13.4

【答案】B

【解析】

過點EEHPQ于點H,延長PQAB于點G,利用已知條件可得到AQAN,EN的長及∠PEH的度數(shù),同時可得四邊形HGNE是矩形,就可推出EN=HG=3米,HE=GN,利用坡度的定義及勾股定理求出QG,AG的長,由此可得到HE,QH的長,然后利用解直角三角形求出PH的長,根據(jù)PQ=PH+QH,就可求出PQ的長.

解:過點EEHPQ于點H,延長PQAB于點G

由題意可知:∠PEH=53°AQ=3.9米,AN=4.4米,EN=3米,四邊形HGNE是矩形,

EN=HG=3米,HE=GN

AD的坡度為i=12.4,

QGAG=12.4,

QG=x,則AG=2.4x,

RtAQG中,AG2+QG2=AQ2,即x2+2.4x2=3.92,

解得:x=1.5

AG=1.5×2.4=3.6,QG=1.5,

HE=NG=AG+AN=3.6+4.4=8HQ=HG-QG=3-1.5=1.5,

RtPHE中,PH=HE·tanPEH=8tan53°≈8×1.3=10.4米,

PQ=PH+QH=10.4+1.5=11.9米,

故答案為:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:在中,邊上的動點運動(與,不重合),點與點同時出發(fā),由點沿的延長線方向運動(不與重合),連結于點,點是線段上一點.

1)初步嘗試:如圖,若是等邊三角形,,且點,的運動速度相等,求證:.

小王同學發(fā)現(xiàn)可以由以下兩種思路解決此問題:

思路一:過點,交于點,先證,再證,從而證得結論成立;

思路二:過點,交的延長線于點,先證,再證,從而證得結論成立.

請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分)

2)類比探究:如圖,若在中,,,且點,的運動速度之比是,求的值;

3)延伸拓展:如圖,若在中,,,記,且點、的運動速度相等,試用含的代數(shù)式表示(直接寫出結果,不必寫解答過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調查的方法,從足球、乒乓球、籃球、排球等四個方面調查了全班學生的興趣愛好,根據(jù)調查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖,,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學生人數(shù)為   ,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某花圃銷售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫存,花圃決定采取適當?shù)慕祪r措施,經(jīng)調查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.

1)若花圃平均每天要盈利1200元,每盆花卉應降價多少元?

2)每盆花卉降低多少元時,花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“一方有難,八方支援”是中華民族的傳統(tǒng)美德.2201325分,山西第12批支援武漢醫(yī)療隊整裝出發(fā),在抗擊新冠病毒戰(zhàn)役中,我省支援湖北醫(yī)療隊共1500多人奔赴武漢.其中小麗、小王和三個同事共五人直接派往一線某醫(yī)院,根據(jù)該醫(yī)院人事安排需要先抽出一人去急診科,再派兩人到發(fā)熱門診,請你利用所學知識完成下列問題.

1)小麗被派往急診科的概率是______;

2)若正好抽出她們一同事去往急診科,請你利用畫樹狀圖或列表的方法,求出小麗和小王同時被派往發(fā)熱門診的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:我們把對角線互相垂直的四邊形叫做神奇四邊形.順次連接四邊形各邊中點得到的四邊形叫做中點四邊形.

1)判斷:

①在平行四邊形、矩形、菱形中,一定是神奇四邊形的是

②命題:如圖1,在四邊形中,則四邊形是神奇四邊形.此命題是_____(填“真”或“假”)命題;

③神奇四邊形的中點四邊形是

2)如圖2,分別以的直角邊和斜邊為邊向外作正方形和正方形,連接

①求證:四邊形是神奇四邊形;

②若,求的長;

3)如圖3,四邊形是神奇四邊形,若分別是方程的兩根,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著中國經(jīng)濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在直角中,,點在邊上,且如果將沿所在的直線翻折,點恰好落在邊上的點處,點邊上的一個動點,聯(lián)結,以圓心,為半徑作⊙,交線段于點和點,作交⊙于點,交線段于點

1)求點到點和直線的距離

2)如果點平分劣弧,求此時線段的長度

3)如果為等腰三角形,以為圓心的⊙與此時的⊙相切,求⊙的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、重合),過點的垂線交折線于點.以、為鄰邊構造矩形.設矩形重疊部分圖形的面積為,點的運動時間為秒.

1)直接寫出的長(用含的代數(shù)式表示);

2)當點落在的邊上時,求的值;

3)當矩形重疊部分圖形不是矩形時,求的函數(shù)關系式,并寫出的取值范圍;

4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.

查看答案和解析>>

同步練習冊答案