【題目】已知:,,,設(shè),,,……,
(1)計算___________,____________,____________
(2)寫出,,,四者之間的關(guān)系,并證明你的結(jié)論.
(3)根據(jù)(2)的結(jié)論,直接寫出的值是_____________
【答案】(1)5,4,13;(2),見解析;(3)38
【解析】
(1)s2=a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=1+4=5,由(a+b+c)3=﹣2(a3+b3+c3)+6abc+3(a2+b2+c2),可求s3,由變形可求s4;
(2)sn=sn﹣1(a+b+c)﹣(an﹣1b+an﹣1c+abn﹣1+cbn﹣1+acn﹣1+bcn﹣1)=sn﹣1(a+b+c)﹣[sn﹣2(ab+ac+bc)﹣abcn﹣2﹣abn﹣2c﹣an﹣2bc]=sn﹣1(a+b+c)﹣sn﹣2(ab+ac+bc)+sn﹣3abc,將已知條件代入即可;
(3)利用所求關(guān)系式可得:s5=s4+2s3﹣s2=13+8﹣5=16,則s6=s5+2s4﹣s3=16+26﹣4=﹣38.
(1)s2=a2+b2+c2=(a+b+c)2﹣2(ab+bc+ca)=1+4=5,
(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc=a3+b3+c3+3a2(b+c)+3b2(a+c)+3c2(a+b)+6abc.
∵a+b+c=1,abc=﹣1,
∴(a+b+c)3=a3+b3+c3+3a2(1-a)+3b2(1-b)+3c2(1-c)+6abc
∴(a+b+c)3=a3+b3+c3+3a2-3a3+3b2-3b3+3c21-3c3+6abc
∴(a+b+c)3=﹣2(a3+b3+c3)-6+3(a2+b2+c2),
∴s3=a3+b3+c3=4.
∵ab+bc+ac=-2,
∴,
∴,
∴,
∴.
∵,
∴,
∴
∴
∴s4=a4+b4+c4=13.
故答案為:5,4,13;
(2)關(guān)系為sn=sn﹣1﹣2sn﹣2﹣sn﹣3;理由:
sn=sn﹣1(a+b+c)﹣(an﹣1b+an﹣1c+abn﹣1+cbn﹣1+acn﹣1+bcn﹣1)=sn﹣1(a+b+c)﹣[sn﹣2(ab+ac+bc)﹣abcn﹣2﹣abn﹣2c﹣an﹣2bc]=sn﹣1(a+b+c)﹣sn﹣2(ab+ac+bc)+sn﹣3abc.
∵a+b+c=1,ab+bc+ca=﹣2,abc=﹣1,
∴sn=sn﹣1+2sn﹣2﹣sn﹣3;
(3)∵s5=s4+2s3﹣s2=13+8﹣5=16,
∴s6=s5+2s4﹣s3=16+26﹣4=﹣38,
∴a6+b6+c6的為38.
故答案為:38.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,表示一騎自行車者與一騎摩托車者沿相同路線由甲地到乙地行駛過程的圖象,兩地間的距離是100千米,請根據(jù)圖象回答或解決下面的問題.
(1)誰出發(fā)的較早?早多長時間?誰到達乙地早?早到多長時間?
(2)兩人在途中行駛的速度分別是多少?
(3)指出在什么時間段內(nèi)兩車均行駛在途中;在這段時間內(nèi),
①自行車行駛在摩托車前面;
②自行車與摩托車相遇;
③自行車行駛在摩托車后面?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,點F在AC的延長線上,且∠CAB=2∠CBF.
(1)試判斷直線BF與⊙O的位置關(guān)系,并說明理由;
(2)若AB=6,BF=8,求tan∠CBF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知雅美服裝廠現(xiàn)有A種布料70米,B種布料52米,現(xiàn)計劃用這兩種布料生產(chǎn)M、N兩種型號的時裝共80套.已知做一套M型號的時裝需用A種布料1.1米,B種布料0.4米,可獲利50元;做一套N型號的時裝需用A種布料0.6米,B種布料0.9米,可獲利45元.設(shè)生產(chǎn)M型號的時裝套數(shù)為x,用這批布料生產(chǎn)兩種型號的時裝所獲得的總利潤為y元.
(1)求y(元)與x(套)的函數(shù)關(guān)系式,并求出自變量的取值范圍;
(2)當M型號的時裝為多少套時,能使該廠所獲利潤最大?最大利潤是多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)實施新課程改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分學生進行了為期三個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類,A:特別好;B:好;C:一般;D:較差;并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了 名同學,其中C類女生有 名,D類男生有 名;
(2)將上面的條形統(tǒng)計圖補充完整;
(3)為了共同進步,張老師想從被調(diào)查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC=2,將△ABC繞點A逆時針旋轉(zhuǎn)60°,連接BD,則圖中陰影部分的面積是( 。
A. 2﹣2B. 2C. ﹣1D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,∠BAC=60°,△ABC繞點C順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°),點A、B的對應(yīng)點分別是點D、E.
(1)如圖1,當點D恰好落在邊AB上時,試判斷DE與AC的位置關(guān)系,并說明理由.
(2)如圖2,當點B、D、E三點恰好在一直線上時,旋轉(zhuǎn)角α=__°,此時直線CE與AB的位置關(guān)系是__.
(3)在(2)的條件下,聯(lián)結(jié)AE,設(shè)△BDC的面積S1,△AEC的面積S2,則S1與S2的數(shù)量關(guān)系是_____.
(4)如圖3,當點B、D、E三點不在一直線上時,(3)中的S1與S2的數(shù)量關(guān)系仍然成立嗎?試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com