【題目】小軍同學(xué)在學(xué)校組織的社會調(diào)查活動中負(fù)責(zé)了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機(jī)調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請根據(jù)題中已有的信息補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖;
月均用水量/t | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.
【答案】(1)見解析(2) 279
【解析】試題分析:(1)由已知信息,根據(jù)頻數(shù)、頻率和總量的關(guān)系,求出月均用水量4≤x<5所占百分比和頻數(shù),月均用水量6≤x<7的頻數(shù),從而補(bǔ)全頻數(shù)分布表和頻數(shù)分布直方圖.
(2)求出樣本中家庭月均用水量“大于或等于4t且小于7t” 所占百分比,即可用樣本估計總體.
試題解析:(1)調(diào)查的總數(shù)是50戶,
則6≤x<7的戶數(shù)是50×12%=6(戶),
則4≤x<5的戶數(shù)是50-2-12-10-6-3-2=15(戶),
所占的百分比是×100%=30%.
補(bǔ)全頻數(shù)分布表如下:
月均用水量/t | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | 15 | 30% |
5≤x<6 | 10 | 20% |
6≤x<7 | 6 | 12% |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
補(bǔ)全頻數(shù)分布直方圖如圖.
(2)中等用水量家庭大約有450×(30%+20%+12%)=279(戶).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點是等邊內(nèi)的任一點,連接,,.
如圖,已知,,將繞點按順時針方向旋轉(zhuǎn),使與重合,得.
()的度數(shù)是__________.
()用等式表示線段,,之間的數(shù)量關(guān)系,并證明.(圖為備用圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:若∠AOD=∠BOC=60°,A、O、C三點在同一條線上,△AOB與△COD是能夠重合的圖形.求:
(1)旋轉(zhuǎn)中心;
(2)旋轉(zhuǎn)角度數(shù);
(3)圖中經(jīng)過旋轉(zhuǎn)后能重合的三角形共有幾對?若A、O、C三點不共線,結(jié)論還成立嗎?為什么?
(4)求當(dāng)△BOC為等腰直角三角形時的旋轉(zhuǎn)角度;
(5)若∠A=15°,則求當(dāng)A、C、B在同一條線上時的旋轉(zhuǎn)角度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=4 cm,AC=2 cm.
(1)在AB上取一點D(D不與A、B重合),當(dāng)AD=_________cm時,△ACD∽△ABC.
(2)在AC的延長線上取一點E,當(dāng)CE=________cm時,△AEB∽△ABC.此時BE與DC有怎樣的位置關(guān)系?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)南充市創(chuàng)建“全國衛(wèi)生城市”的號召,某校1 500名學(xué)生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖表,根據(jù)圖表信息,以下說法不正確的是( )
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計全校學(xué)生成績?yōu)锳等大約有900人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(題文)(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是_________;
(2)問題解決:
如圖2,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證BE+CF>EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列語句中:
①由∠A:∠B:∠C=4:3:2可確定△ABC是銳角三角形;
②若三角形的兩邊長是3和4,且周長是偶數(shù),則這個三角形的第三邊是3或5;
③一個圖形和它經(jīng)過平移所得的圖形中,兩組對應(yīng)點的連線互相平行;
④若一個多邊形的外角和是內(nèi)角和的,則這個多邊形是十二邊形.
其中正確的是_________(只要寫序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示.
(1)作出△ABC關(guān)于y軸對稱的△A′B′C′,并寫出△A′B′C′三個頂點的坐標(biāo).
(2)在x軸上畫出點P,使PA+PC最小,并直接寫出此時PA+PC的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com