【題目】用四個(gè)長為m,寬為n的相同長方形按如圖方式拼成一個(gè)正方形.
(1).請用兩種不同的方法表示圖中陰影部分的面積.
方法①: ;
方法②: .
(2).由 (1)可得出2, ,4mn這三個(gè)代數(shù)式之間的一個(gè)等量關(guān)系為: .
(3)利用(2)中得到的公式解決問題:已知2a+b=6,ab=4,試求的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,點(diǎn)E、F分別在邊CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求證:四邊形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】
在△ABC中,AB=AC,點(diǎn)P為BC所在直線上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.當(dāng)P在BC邊上時(shí)(如圖1),求證:PD+PE=CF.
圖① 圖② 圖③
證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)
【變式探究】
當(dāng)點(diǎn)P在CB延長線上時(shí),其余條件不變(如圖3).試探索PD、PE、CF之間的數(shù)量關(guān)系并說明理由.
請運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:
【結(jié)論運(yùn)用】
如圖4,將長方形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】
在直角坐標(biāo)系中.直線l1:y=與直線l2:y=2x+4相交于點(diǎn)A,直線l1、l2與x軸分別交于點(diǎn)B、點(diǎn)C.點(diǎn)P是直線l2上一個(gè)動(dòng)點(diǎn),若點(diǎn)P到直線l1的距離為1.求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=5,AC=12,M為斜邊AB上一動(dòng)點(diǎn),過M作MD⊥AC,過M作ME⊥CB于點(diǎn)E,則線段DE的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=1,點(diǎn)P是BC邊上的任意一點(diǎn)(異于端點(diǎn)B、C),連接AP,過B、D兩點(diǎn)作BE⊥AP于點(diǎn)E,DF⊥AP于點(diǎn)F.
(1)求證:EF=DF﹣BE;
(2)若△ADF的周長為,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論:w
①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;
②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;
③若b=2a,則關(guān)于x的方程ax+b=0(a≠0)的解為x=﹣;
④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;
其中結(jié)論正確個(gè)數(shù)有( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為10,∠A=60°,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去….則四邊形A2B2C2D2的周長是 ;四邊形A2015B2015C2015D2015的周長 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且|a+4|+(b﹣1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.
(1)求線段AB的長|AB|;
(2)設(shè)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)為x,當(dāng)|PA|﹣|PB|=2時(shí),求x的值;
(3)若點(diǎn)P在A的左側(cè),M、N分別是PA、PB的中點(diǎn),當(dāng)P在A的左側(cè)移動(dòng)時(shí),下列兩個(gè)結(jié)論:
①|(zhì)PM|+|PN|的值不變;②|PN|﹣|PM|的值不變,其中只有一個(gè)結(jié)論正確,請判斷出正確結(jié)論,并求其值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com