關于二次函數(shù),以下結論:① 拋物線交軸有兩個不同的交點;②不論k取何值,拋物線總是經過一個定點;③設拋物線交軸于A、B兩點,若AB=1,則k=9;;④ 拋物線的頂點在圖像上.其中正確的序號是(    )

A.①②③④       B.②③       C.②④      D.①②④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


在Rt△ABC中,∠C=90°,AC=9,BC=12,則點C到AB的距離是(      )

A、 3           B、  4         C、 15           D、 7.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,點P、Q同時從點C出發(fā),以1cm/s的速度分別沿CACB勻速運動,當點Q到達點B時,點P、Q同時停止運動.過點PAC的垂線lAB于點R,連接PQ、RQ,并作△PQR關于直線l對稱的圖形,得到△PQ'R.設點Q的運動時間為t(s),△PQ'R與△PAR重疊部分的面積為S(cm2).

(1)t為何值時,點Q' 恰好落在AB上?

(2)求St的函數(shù)關系式,并寫出t的取值范圍.

(3)S能否為?若能,求出此時t的值;若不能,請說明理由.

 


 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,拋物線y=ax2+bx+cx軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3).點C是點A關于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于點D

(1)求拋物線的解析式;

(2)點K為線段AB上一動點,過點Kx軸的垂線,交直線CD于點H,交拋物線于點G,求線段HG長度的最大值;

(3)在直線l上取點M,在拋物線上取點N,使以A,C,MN為頂點的四邊形是平行四邊形,求點N的坐標.


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


兩圓的半徑分別為,圓心距為4.若,則兩圓(     )

A.內含             B.相交              C.外切            D.外離

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,Rt△ABC的直角邊BCx軸正半軸上,點D為斜邊AC的中點,DB的延長線交y軸負半軸于點E,反比例函數(shù)的圖象經過點A.若SBEC=4,則k的值     

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲怠

對于任意正實數(shù)a、b,可作如下變形a+b==-+=+ ,

又∵≥0, ∴+ ≥0+,即

(1)根據(jù)上述內容,回答下列問題:在ab均為正實數(shù))中,若ab為定值p,則a+b,當且僅當ab滿足    時,a+b有最小值

(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗證成立,并指出等號成立時的條件.

 (3)探索應用:如圖2,已知A為反比例函數(shù)的圖像上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉,保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連結DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,A、M是反比例函數(shù)的圖象上的兩點,過點M作直線MBx軸,交軸于點B;過點作直線軸交軸于點,交直線MB于點DBM:DM=8:9,當四邊形OADM的面積為時,k


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


世界最長的跨海大橋——杭州灣跨海大橋總造價為32.48億元人民幣,32.48億元用科學記數(shù)法可表示為              。(結果保留3個有效數(shù)字)

查看答案和解析>>

同步練習冊答案