【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)若BC=12,DE=5,求△AEF的面積.
【答案】(1)見解析;(2)84.5.
【解析】
(1)由正方形的性質得出AD=AB,∠D=∠ABC=∠ABF=90°,依據“SAS”即可證得;
(2)根據勾股定理求得AE=13,再由旋轉的性質得出AE=AF,∠EAF=90°,從而由面積公式得出答案.
解:(1)∵四邊形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
而F是CB的延長線上的點,
∴∠ABF=90°,
在△ADE和△ABF中,
∵ ,
∴△ADE≌△ABF(SAS);
(2)∵BC=12,∴AD=12,
在Rt△ADE中,DE=5,AD=12,
∴AE==13,(勾股定理)
∵△ABF可以由△ADE繞旋轉中心A點,按順時針方向旋轉90°得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面積=AE2=×169=84.5.
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,∠C=30°,以邊上AC上一點O為圓心,OA為半徑作⊙O,⊙O恰好經過邊BC的中點D,并與邊AC相交于另一點F.
(1)求證:BD是⊙O的切線.
(2)若AB=,E是半圓上一動點,連接AE,AD,DE.
填空:
①當的長度是____________時,四邊形ABDE是菱形;
②當的長度是____________時,△ADE是直角三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=90°.
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);
(2)在(1)的條件下,若∠B=45°,AB=1,⊙P切BC于點D,求劣弧的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線:與直線:交于點,則______.
【答案】-1
【解析】
將點A的坐標代入兩直線解析式得出關于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點睛】
本題主要考查兩直線相交或平行問題,解題的關鍵是掌握兩直線的交點坐標必定同時滿足兩個直線解析式.
【題型】填空題
【結束】
11
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若AB=4+,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】霧霾天氣嚴重影響市民的生活質量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調查了所在城市部分市民,并對調查結果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:
組別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車尾氣排放 | |
C | 爐煙氣排放 | 15% |
D | 其他(濫砍濫伐等) |
請根據統(tǒng)計圖表回答下列問題:
(1)本次被調查的市民共有多少人?并求和的值;
(2)請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數;
(3)若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】△ABC 是等邊三角形,點 P 在△ABC 內,PA=2,將△PAB 繞點 A 逆時針旋轉得到△P1AC,則 P1P 的長等于( )
A. 2 B. C. D. 1
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com