【題目】如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)求∠DCA的度數(shù);
(2)求∠DCE的度數(shù).
【答案】(1)25°.(2)95°.
【解析】試題分析:(1)利用角平分線的定義可以求得∠DAB的度數(shù),再依據(jù)∠DAB+∠D=180°求得∠D的度數(shù),在△ACD中利用三角形的內(nèi)角和定理.即可求得∠DCA的度數(shù);
(2)根據(jù)(1)可以證得:AB∥DC,利用平行線的性質(zhì)定理即可求解.
解:(1)∵AC平分∠DAB,
∴∠CAB=∠DAC=25°,
∴∠DAB=50°,
∵∠DAB+∠D=180°,
∴∠D=180°﹣50°=130°,
∵△ACD中,∠D+∠DAC+∠DCA=180°,
∴∠DCA=180°﹣130°﹣25°=25°.
(2)∵∠DAC=25°,∠DCA=25°,
∴∠DAC=∠DCA,
∴AB∥DC,
∴∠DCE=∠B=95°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個(gè)頂點(diǎn),另外兩個(gè)頂點(diǎn)在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標(biāo)注數(shù)字3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y1=a(x﹣2)2的圖象與直線交于A(0,﹣1),B(2,0)兩點(diǎn).
(1)確定二次函數(shù)的解析式;
(2)設(shè)直線AB解析式為y2,根據(jù)圖形,確定當(dāng)y1>y2時(shí),自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點(diǎn)B處看見一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā),沿直線立即從點(diǎn)B出發(fā),沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球,如果小球滾動的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,E,F,G,H分別為邊AB,BC,CD,DA上的點(diǎn),HA=EB=FC=GD,連接EG,FH,交點(diǎn)為O.
(1)如圖2,連接EF,FG,GH,HE,試判斷四邊形EFGH的形狀,并證明你的結(jié)論;
(2)將正方形ABCD沿線段EG,HF剪開,再把得到的四個(gè)四邊形按圖3的方式拼接成一個(gè)四邊形.若正方形ABCD的邊長為3cm,HA=EB=FC=GD=1cm,則圖3中陰影部分的面積為 cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華為了測量樓房AB的高度,他從樓底的B處沿著斜坡行走20m,到達(dá)坡頂D處,已知斜坡的坡角為15°.(sin15°=0.259,cos15°=0.966,tan15°=0.268,以下計(jì)算結(jié)果精確到0.1m)
(1)求小華此時(shí)與地面的垂直距離CD的值;
(2)小華的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分解因式:
(1) (2) 25x2﹣81y2
(3)x3﹣2x2y+xy2 (4)
(5)a4-1 (6)a4-18a2+81
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com