如圖,在正方形ABCD中,E是正方形內(nèi)一點,F(xiàn)是正方形外一點,且∠EDC=∠FBC,EC⊥CF.
(1)求證:EC=FC;
(2)當BE:CE=1:2,∠BEC=135°時,求tan∠FBE的值.
(1)證明:在正方形ABCD中,CD=CB,∠DCE+∠BCE=∠BCD=90°,
∵EC⊥CF,
∴∠BCF+∠BCE=90°,
∴∠BCF=∠DCE,
在△BCF和△DCE中,
∠EDC=∠FBC
CD=BC
∠BCF=∠DCE

∴△BCF≌△DCE(ASA),
∴EC=FC;

(2)如圖,連接EF,∵EC⊥CF,EC=FC,
∴△ECF是等腰直角三角形,
∴∠CEF=45°,
∵∠BEC=135°,
∴∠BEF=∠BEC-∠CEF=135°-45°=90°,
∵BE:CE=1:2,
∴設BE=k,CE=2k,
則EF=
2
CE=2
2
k,
在Rt△BEF中,tan∠FBE=
EF
BE
=
2
2
k
k
=2
2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,點P是BC上任意一點,DE⊥AP于點E,BF⊥AP于點F,CH⊥DE于點H,BF的延長線交CH于點G.
(1)求證:AF-BF=EF;
(2)四邊形EFGH是什么四邊形?并證明;
(3)若AB=2,BP=1,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E為對角線AC上一點,連接EB、ED;
①求證:△BEC≌△DEC;
②延長BE交AD于點F,若∠DEB=130°,求∠AFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,EF與MN將正方形ABCD恰好分成兩個矩形和兩小正方形,如果AB=1,則正方形AMPE與正方形PFCN的周長和為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點E、F分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于(  )
A.
225
16
B.
256
15
C.
256
17
D.
289
16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,正方形ABCD的邊長為1,點E為AB的中點,以E為圓心,1為半徑作圓,分別交AD,BC于M,N兩點,與DC切于點P,則圖中陰影部分面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=4,點E是邊CD上的任意一點(不與C、D重合),將△ADE沿AE翻折至△AFE,延長EF交邊BC于點G,連接AG.
(1)求證:△ABG≌△AFG;
(2)若設DE=x,BG=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)連接CF,若AGCF,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點O(0,0),B(0,1)是正方形OBB1C的兩個頂點,以對角線OB1為一邊作第1個正方形OB1B2C1,再以對角線OB2為一邊作第2個正方形OB2B3C2,…依次下去,則:
(1)第1個正方形的邊長=______;
(2)第10個正方形的邊長=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,△ECF是等腰直角三角形,其中CE=CF,G是CD與EF的交點.
(1)求證:△BCF≌△DCE;
(2)若BC=5,CF=3,∠BFC=90°,求DG:GC的值.

查看答案和解析>>

同步練習冊答案