下列結論不正確的是


  1. A.

    如圖,若PA=PB,∠APB=2∠ACB,AC與PB交于點D,且PB=4,PD=3,則AD•DC等于6
  2. B.

    M是△ABC的內心,∠BMC=130°,則∠A的度數(shù)為50°
  3. C.

    如圖,⊙O中,弦AD∥BC,DA=DC,∠AOC=160°,則∠BCO等于80°
  4. D.
    若一圓錐的軸截面是等邊三角形,則其側面展開圖的圓心角是120°
A
分析:以P為圓心,以PA=PB為半徑作圓,延長BD交圓于M,根據(jù)相交弦定理求出即可;求出∠ABC+∠ACB的度數(shù),根據(jù)三角形的內角和定理求出即可;求出∠ADC,根據(jù)等腰三角形性質求出∠DCO,根據(jù)平行線性質求出即可;根據(jù)弧長公式求出即可.
解答:A、以P為圓心,以PA=PB為半徑作圓,延長BD交圓于M,

則有:PA=PB=4,∠APB=2∠ACB,AC與PB交于點D,PD=3,
設∠ACB=θ,則∠APM=2θ,又∠ACB=θ,∴C在圓上.
∴AD•DC=BD•DM=BD•(PM+PD)=1•(4+3)=7,故本選項錯誤;
B、∵M是△ABC的內心,∠BMC=130°,
∴∠MBC+∠MCB=180°-130°=50°,
∴∠ABC+∠ACB=2×50°=100°,
∴∠A=180°-100°=80°,故本選項錯誤;
C、連接AC,

∵∠B=∠AOC=80°,
∴∠ADC=180°-80°=100°,
∵AD=DC,
∴∠DCA=∠DAC=(180°-100°)=40°,
同理∠AC0=10°,
∵AD∥BC,
∴∠ADC+∠DCB=180°,∴∠BCO=30°,故本選項錯誤;
D、設半徑是a,則等邊三角形的邊長是2a,
∴2πa=,
解得:n=180,故本選項錯誤;
故答案都不對.
點評:本題主要考查對三角形的內角和定理,相交弦定理,等腰三角形的性質,圓內接四邊形的性質,三角形的內切圓等知識點的理解和掌握,綜合運用性質進行推理是解此題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

4、下列結論不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

6、如圖,D是△ABC的重心,則下列結論不正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分線交BC于D,則下列結論不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,兩直線AB∥CD,且被EF所截,∠1=70°,下列結論不正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,∠1=∠2=∠4,則下列結論不正確的是(  )

查看答案和解析>>

同步練習冊答案