已知二次函數(shù).
(1)當(dāng)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由。
解:(1)∵二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0),
∴代入得:,解得:m=±1。
∴二次函數(shù)的解析式為:或。
(2)∵m=2,∴二次函數(shù)為:。
∴拋物線的頂點(diǎn)為:D(2,-1)。
當(dāng)x=0時(shí),y=3,
∴C點(diǎn)坐標(biāo)為:(0,3)。
(3)存在,當(dāng)P、C、D共線時(shí)PC+PD最短。
過(guò)點(diǎn)D作DE⊥y軸于點(diǎn)E,
∵PO∥DE,∴△COP∽△CED。
∴,即,解得:
∴PC+PD最短時(shí),P點(diǎn)的坐標(biāo)為:P(,0)。
解析試題分析:(1)根據(jù)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0),直接代入求出m的值即可。
(2)把m=2,代入求出二次函數(shù)解析式,利用配方法求出頂點(diǎn)坐標(biāo)以及圖象與y軸交點(diǎn)即可。
(3)根據(jù)兩點(diǎn)之間線段最短的性質(zhì),當(dāng)P、C、D共線時(shí)PC+PD最短,利用相似三角形的判定和性質(zhì)得出PO的長(zhǎng)即可得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線與軸交于點(diǎn)A(-1,0)、B(3,0),與軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)若P為線段BD上的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為m,試用含m的代數(shù)式表示點(diǎn)P的縱坐標(biāo);
(3)過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo);
(4)若點(diǎn)F是第一象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)F作FQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)F的坐標(biāo)為 時(shí),四邊形FQAC是平行四邊形;當(dāng)點(diǎn)F的坐標(biāo)為 時(shí),四邊形FQAC是等腰梯形(直接寫出結(jié)果,不寫求解過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線與直線交于點(diǎn).點(diǎn)是拋物線上,之間的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)分別作軸、軸的平行線與直線交于點(diǎn),.
(1)求拋物線的函數(shù)解析式;
(2)若點(diǎn)的橫坐標(biāo)為2,求的長(zhǎng);
(3)以,為邊構(gòu)造矩形,設(shè)點(diǎn)的坐標(biāo)為,求出之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)的圖象以為頂點(diǎn),且過(guò)點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)求該二次函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
矩形紙片ABCD中,AB=5,AD=4.
(1)如圖1,四邊形MNEF是在矩形紙片ABCD中裁剪出的一個(gè)正方形.你能否在該矩形中裁剪出一個(gè)面積最大的正方形,最大面積是多少?說(shuō)明理由;
(2)請(qǐng)用矩形紙片ABCD剪拼成一個(gè)面積最大的正方形.要求:在圖2的矩形ABCD中畫出裁剪線,并在網(wǎng)格中畫出用裁剪出的紙片拼成的正方形示意圖(使正方形的頂點(diǎn)都在網(wǎng)格的格點(diǎn)上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
先閱讀以下材料,然后解答問(wèn)題:
材料:將二次函數(shù)的圖象向左平移1個(gè)單位,再向下平移2個(gè)單位,求平移后的拋物線的解析式(平移后拋物線的形狀不變)。
解:在拋物線上任取兩點(diǎn)A(0,3)、B(1,4),由題意知:點(diǎn)A向左平移1個(gè)單位得到(,3),再向下平移2個(gè)單位得到(,1);點(diǎn)B向左平移1個(gè)單位得到(0,4),再向下平移2個(gè)單位得到(0,2)。
設(shè)平移后的拋物線的解析式為。
則點(diǎn)(,1),(0,2)在拋物線上。
可得:,解得:。
所以平移后的拋物線的解析式為:。
根據(jù)以上信息解答下列問(wèn)題:
將直線向右平移3個(gè)單位,再向上平移1個(gè)單位,求平移后的直線的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知拋物線y=ax2+bx(a≠0)經(jīng)過(guò)A(3,0)、B(4,4)兩點(diǎn).
(1)求拋物線的解析式;
(2)將直線OB向下平移m個(gè)單位長(zhǎng)度后,得到的直線與拋物線只有一個(gè)公共點(diǎn)D,求m的值及點(diǎn)D的坐標(biāo);
(3)如圖2,若點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,求出所有滿足△POD∽△NOB的點(diǎn)P坐標(biāo)(點(diǎn)P、O、D分別與點(diǎn)N、O、B對(duì)應(yīng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6),將△BCD沿BD折疊(D點(diǎn)在OC邊上),使C點(diǎn)落在DA邊的E點(diǎn)上,并將△BAE沿BE折疊,恰好使點(diǎn)A落在BD邊的F點(diǎn)上.
(1)求BC的長(zhǎng),并求折痕BD所在直線的函數(shù)解析式;
(2)過(guò)點(diǎn)F作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線經(jīng)過(guò)B,H, D三點(diǎn),求拋物線解析式;
(3)點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng)(不含B, D點(diǎn)),過(guò)點(diǎn)P作PN⊥BC,分別交BC 和 BD于點(diǎn)N, M,是否存在這樣的點(diǎn)P,使如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com