【題目】如圖,在△ABC中,CD⊥AB于D,FG⊥AB于G,ED∥BC,求證∠1=∠2.以下是推理過程,請你填空:
解:∵CD⊥AB,FG⊥AB
∴∠CDB=∠FGB=90°( 垂直定義)
∴ ∥FG( )
∴ =∠3 ( )
又∵DE∥BC ( 已知 )
∴∠ =∠3 ( 兩直線平行,內錯角相等 )
∴∠1=∠2 ( )
科目:初中數(shù)學 來源: 題型:
【題目】將一副直角三角板如圖擺放,等腰直角三角板ABC的斜邊BC與含30°角的直角三角板DBE的直角邊BD長度相同,且斜邊BC與BE在同一直線上,AC與BD交于點O,連接CD.
求證:△CDO是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,BC= .以BC的中點O為圓心的圓分別與AB、AC相切于D、E兩點,則 的長為 ( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 ,在射線 上取點 ,以 為圓心的圓與 相切;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切; ;在射線 上取點 ,以 為圓心, 為半徑的圓與 相切.若 的半徑為 ,則 的半徑長是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.附圖(①)為一張三角形ABC紙片,P點在BC上.今將A折至P時,出現(xiàn)折線BD,其中D點在AC上,如圖(②)所示.若△ABC的面積為80,△DBC的面積為50,則BP與PC的長度比為何?( )
A.3:2 B.5:3 C.8:5 D.13:8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OA⊥OC,OB⊥OD,下面結論中,其中說法正確的是( 。
①∠AOB=∠COD;
②∠AOB+∠COD=90°;
③∠BOC+∠AOD=180°;
④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,以△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,試判斷△ABC與△AEG面積之間的關系,并說明理由。
(2)園林小路,曲徑通幽,如圖2所示,小路由白色的正方形理石和黑色的三角形理石鋪成.已知中間的所有正方形的面積之和是a平方米,內圈的所有三角形的面積之和是b平方米,這條小路一共占地多少平方米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABOC的頂點O在坐標原點,頂點B,C分別在x,y軸的正半軸上,頂點A在反比例函數(shù)y= (k為常數(shù),k>0,x>0)的圖象上,將矩形ABOC繞點A按逆時針反向旋轉90°得到矩形AB′O′C′,若點O的對應點O′恰好落在此反比例函數(shù)圖象上,則 的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com