【題目】二次函數(shù)y=的圖象與x軸交于點A和點B,以AB為邊在x軸下方作正方形ABCD,點Px軸上一動點,連接DP,過點PDP的垂線與y軸交于點E

1)求出m的值并求出點A、點B的坐標.

2)當點P在線段AO(點P不與A、O重合)上運動至何處時,線段OE的長有最大值,求出這個最大值;

3)是否存在這樣的點P,使△PED是等腰三角形?若存在,請求出點P的坐標及此時△PED與正方形ABCD重疊部分的面積;若不存在,請說明理由.

【答案】1m=2,A(﹣30),B1,0);(2PAO中點時,OE的最大值為;(3)存在,見解析.

【解析】

1)利用二次函數(shù)的定義求出m的知,再令y=0即可得出點AB坐標;
2)設(shè)PA=t-3t0),則OP=3-t,如圖1,證明DAP∽△POE,利用相似比得到OE=- ,然后利用二次函數(shù)的性質(zhì)解決問題;
3)討論:當點Py軸左側(cè)時,如圖2DEABG點,證明DAP≌△POE得到PO=AD=4,則PA=1,OE=1,再利用平行線分線段成比例定理計算出AG= ,則計算SDAG即可得到此時PED與正方形ABCD重疊部分的面積;當P點在y軸右側(cè)時,如圖3,DEABG點,DPBC相交于Q,同理可得DAP≌△POE,則PO=AD=4PA=7,OE=7,再利用平行線分線段成比例定理計算出OGBQ,然后計算S四邊形DGBQ得到此時PED與正方形ABCD重疊部分的面積.當點P和點A重合時,點E和和點O重合,此時,PED不是等腰三角形.

1)∵二次函數(shù)y=m16x+9,

m2+m=2m1≠0

m=2,

∴二次函數(shù)解析式為y=3x26x+9

y=0,

0=3x26x+9,

x=1x=3

A(﹣3,0),B1,0);

2)設(shè)PA=t(﹣3t0),則OP=3t,

DPPE,

∴∠DPA=PEO,

∴△DAP∽△POE,

,即,

OE=t2+t=t2+

∴當t=時,OE有最大值,

PAO中點時,OE的最大值為;

3)存在.

當點Py軸左側(cè)時,如圖1,DEABG點,

PD=PE,∠DPE=90°,

∴△DAP≌△POE,

PO=AD=4

PA=1,OE=1,

ADOE,

=4

AG=,

SDAG=××4=,

P點坐標為(﹣40),此時PED與正方形ABCD重疊部分的面積為;P點在y軸右側(cè)時,如圖2,DEABG點,DPBC相交于Q,同理可得DAP≌△POE,

PO=AD=4,

PA=7OE=7,

ADOE,

,

OG=,

同理可得BQ=,

S四邊形DGBQ=×+1×4+×4×=

∴當點P的坐標為(4,0)時,此時PED與正方形ABCD重疊部分的面積為

當點P和點A重合,此時,點E和點O重合,∴DP≠OP,此時,PDE不是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;,其中正確結(jié)論的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,解答問題.

材料:“小聰設(shè)計的一個電子游戲是:一電子跳蚤從這P1(3,9)開始,按點的橫坐標依次增加1的規(guī)律,在拋物線yx2上向右跳動,得到點P2、P3P4、P5(如圖1所示).過P1、P2P3別作P1H1、P2H2、P3H3垂直于x軸,垂足為H1、H2、H3,則SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)×2(9+4)×1(4+1)×1,即△P1P2P3的面積為1.”

問題:

(1)求四邊形P1P2P3P4P2P3P4P5的面積(要求:寫出其中一個四邊形面積的求解過程,另一個直接寫出答案);

(2)猜想四邊形Pn1PnPn+1Pn+2的面積,并說明理由(利用圖2);

(3)若將拋物線yx2改為拋物線yx2+bx+c,其它條件不變,猜想四邊形Pn1PnPn+1Pn+2的面積(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙OABC的外接圓,O點在BC邊上,∠BAC的平分線交⊙O于點D,連接BD、CD,過點DBC的平行線,與AB的延長線相交于點P

1)求證:PD是⊙O的切線;

2)求證:PBD∽△DCA

3)當AB=6,AC=8時,求線段PB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小型水庫欄水壩的橫斷面是四邊形ABCDDCAB,測得迎水坡的坡角α=30°,已知背水坡的坡比為1.21,壩頂部DC寬為2m,壩高為6m,則壩底AB的長為_____m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,O為坐標原點,四邊形OABC是矩形,OAx軸的負半軸上,OCy軸的正半軸上.

,

如圖1,將矩形OABC繞點O順時針方向旋轉(zhuǎn)得到矩形,當點A的對應(yīng)點落在BC邊上時,求點的坐標;

如圖,將矩形OABC繞點O順時針方向旋得到矩形,當點B的對應(yīng)點落在軸的正半軸上時,求點的坐標;

,,如圖3,設(shè)邊BC交于點E,若,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,大樓(可以看作不透明的長方體)的四周都是空曠的水平地面.地面上有甲、乙兩人,他們現(xiàn)在分別位于點和點處,均在的中垂線上,且到大樓的距離分別為米和米,又已知米,米,由于大樓遮擋著,所以乙不能看到甲.若乙沿著大樓的外面地帶行走,直到看到甲(甲保持不動),則他行走的最短距離長為________米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點,與y軸交于C點,且A(一1,0).

(1)求拋物線的解析式及頂點D的坐標;

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點M是拋物線對稱軸上的一個動點,當△ACM周長最小時,求點M的坐標及△ACM的最小周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=2x2+m.(1)若點(-2,y1)與(3,y2)在此二次函數(shù)的圖象上,則y1_________y2(填、“=”);(2)如圖,此二次函數(shù)的圖象經(jīng)過點(0,-4),正方形ABCD的頂點CDx軸上,A、B恰好在二次函數(shù)的圖象上,求圖中陰影部分的面積之和.

查看答案和解析>>

同步練習(xí)冊答案