【題目】如圖,△ABC中,下面說法正確的個數是( )個.
①若O是△ABC的外心,∠A=50°,則∠BOC=100°;
②若O是△ABC的內心,∠A=50°,則∠BOC=115°;
③若BC=6,AB+AC=10,則△ABC的面積的最大值是12;
④△ABC的面積是12,周長是16,則其內切圓的半徑是1.
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根據圓周角定理直接求出的度數即可;
利用內心的定義得出進而求出即可;
研究三角形面積最大值的問題,由于已知三邊的和,故可以借助海倫公式建立面積關于邊的函數,再利用基本不等式求最值;
根據內心到三角形三邊距離相等得出內切圓半徑乘以周長等于面積,即可得出答案.
解:若O是的外心,,則,根據圓周角定理直接得出即可,故此選項正確;
若O是的內心,,則,故此選項正確;
若,,則的面積的最大值是12;
由題意,三角形的周長是16,由令,則,
由海倫公式可得三角形的面積
,
等號僅當即時成立,
故三角形的面積的最大值是12,故此選項正確;
的面積是12,周長是16,設內切圓半徑為x,則,
解得:,
則其內切圓的半徑是1,此選項錯誤.
故正確的有共3個.
故選:C.
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點D,過點D作⊙O的切線EF,交AB和AC的延長線于E、F.
(1)求證:FE⊥AB;
(2)當AE=6,sin∠CFD=時,求EB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.
小何根據學習函數的經驗,將此問題轉化為函數問題解決.
小華假設AE的長度為xcm,線段DE的長度為ycm.
(當點C與點A重合時,AE的長度為0cm),對函數y隨自變量x的變化而變化的規(guī)律進行探究.
下面是小何的探究過程,請補充完整:(說明:相關數據保留一位小數).
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y/cm | 0 | 1.6 | 2.5 | 3.3 | 4.0 | 4.7 |
| 5.8 | 5.7 |
當x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:
(2)在圖2中建立平面直角坐標系,描出補全后的表中各組對應值為坐標的點,畫出該函數的圖象;
(3)結合畫出的函數圖象解決問題,當DE=2OE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中華文化源遠流長,文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”某中學為了解學生對四大名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調查,根據調查結果繪制成如下尚不完整的統(tǒng)計圖.
請根據以上信息,解決下列問題
(1)本次調查所得數據的眾數是____部,中位數是_____部;
(2)扇形統(tǒng)計圖中“4部”所在扇形的圓心角為_____度;
(3)請將條形統(tǒng)計圖補充完整;
(4)沒有讀過四大古典名著的兩名學生準備從中各自隨機選擇一部來閱讀,求他們恰好選中同一名著的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本題滿分12分)在數學興趣小組活動中,小明進行數學探究活動.將邊長為2的正方形ABCD與邊長為的正方形AEFG按圖1位置放置,AD與AE在同一條直線上,AB與AG在同一條直線上.
(1)小明發(fā)現,請你幫他說明理由.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
(3)如圖3,若小明將正方形ABCD繞點A繼續(xù)逆時針旋轉,線段DG與線段BE將相交,交點為H,寫出△與△面積之和的最大值,并簡要說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數學課上,愛動腦筋的小孫同學提出了一個問題:已知線段AB和直線L,他想作一個頂點P在直線上L的特殊的,使得
經過課堂討論,有的學習小組提出了如下尺規(guī)作圖方案:
分別以點A,點B為圓心,以線段AB的長度為半徑畫弧,兩條弧在線段AB上方相交于點O;
以O為圓心,OA為半徑作弧,與直線L相交于,兩點;
連接,,,,
所以,就是所求的角
請你根據上述尺規(guī)作圖方案,完成下列問題:
使用直尺和圓規(guī)補全圖形;保留作圖痕跡
完成下面的證明:
證明:在中,連接OA,OB,
為等邊三角形______填推理的依據
,
______填推理的依據
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2﹣1(a>0)與直線y=kx+3交于MN兩點,在y軸負半軸上存在一定點P,使得不論k取何值,直線PM與PN總是關于y軸對稱,則點P的坐標是_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=10,AC=8.線段AD由線段AB繞點A按逆時針方向旋轉90°得到,△EFG由△ABC沿CB方向平移得到,且直線EF過點D.則CG=_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com