【題目】如圖,在△ABC中,ABAC,以AC為直徑作OBC于點D,過點DO的切線EF,交ABAC的延長線于E、F

1)求證:FEAB

2)當AE6,sinCFD時,求EB的長.

【答案】1)見解析;(2.

【解析】

1)先證明ODAB,得出∠ODF=∠AEF,再由切線的性質得出∠ODF90°,證出∠AEF90°,即可得出結論;

2)設OAODOCr,先由三角函數(shù)求出AF,再證明ODF∽△AEF,得出對應邊成比例求出半徑,得出AB,即可求出EB

1)證明:連接OD,如圖所示:

OCOD,

∴∠OCD=∠ODC

ABAC,

∴∠ACB=∠B

∴∠ODC=∠B,

ODAB,

∴∠ODF=∠AEF,

EF與⊙O相切,

ODEF,

∴∠ODF90°

∴∠AEF=∠ODF90°,

EFAB;

2)解:設OAODOCr,

由(1)知:ODABODEF,

RtAEF中,sinCFD,AE6

AF10,

ODAB,

∴△ODF∽△AEF,

解得r,

ABAC2r,

EBABAE6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,橫坐標、縱坐標都為整數(shù)的點稱為整點.請你觀察圖中正方形A1B1C1D1A2B2C2D2,A3B3C3D3…每個正方形四條邊上的整點的個數(shù).按此規(guī)律推算出正方形A10B10C10D10四條邊上的整點共有______個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場為了吸引顧客,設計了一種促銷活動:在一個不透明的箱子里放有4個相同的小球,球上分別標有010、2030的字樣.規(guī)定:顧客在本商場同一日內,每消費滿200元,就可以在箱子里先后摸出兩個球(第一次摸出后不放回),商場根據(jù)兩小球所標金額的和返還相應價格的購物券,可以重新在本商場消費,某顧客剛好消費200元.

1)該顧客至少可得到_____元購物券,至多可得到_______元購物券;

2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于30元的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸的負半軸、y軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉,使點B落在y軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tanDOE=,,則BN的長為______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( 。

A. 擲一枚均勻的骰子,骰子停止轉動后,5點朝上是必然事件

B. 明天下雪的概率為,表示明天有半天都在下雪

C. 甲、乙兩人在相同條件下各射擊10次,他們成績的平均數(shù)相同,方差分別是S2=0.4,S2=0.6,則甲的射擊成績較穩(wěn)定

D. 了解一批充電寶的使用壽命,適合用普查的方式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線AC剪開,再把ACD沿CA方向平移得到A1C1D1,連結AD1BC1.若∠ACB30°,AB1,CC1x,ACDA1C1D1重疊部分的面積為s,則下列結論:①A1AD1≌△CC1B②當x1時,四邊形ABC1D1是菱形 ③當x2時,BDD1為等邊三角形 s x220x2),其中正確的有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關系h20t5t2

1)小球飛行時間是多少時,小球最高?最大高度是多少?

2)小球飛行時間t在什么范圍時,飛行高度不低于15m?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線AC與BD相交于點E,點G為AD的中點,連接CG,CG的延長線交BA的延長線于點F,連接FD.

(1)求證:AB=AF;

(2)若AG=AB,∠BCD=120°,判斷四邊形ACDF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,下面說法正確的個數(shù)是(  )個.

①若OABC的外心,∠A50°,則∠BOC100°

②若OABC的內心,∠A50°,則∠BOC115°;

③若BC6,AB+AC10,則ABC的面積的最大值是12;

ABC的面積是12,周長是16,則其內切圓的半徑是1

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案