【題目】已知△ABC中,BC=6,AB、AC的垂直平分線分別交邊BC于點(diǎn)M、N,若MN=2,則△AMN的周長是_____.
【答案】6或10
【解析】
由直線PM為線段AB的垂直平分線,根據(jù)線段垂直平分線定理:線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三邊之和,等量代換可得其周長等于BC的長,由BC的長即可得到三角形AMN的周長.
如圖1,∵直線MP為線段AB的垂直平分線,
∴MA=MB,
又直線NQ為線段AC的垂直平分線,
∴NA=NC,
∴△AMN的周長l=AM+MN+AN=BM+MN+NC=BC,
又BC=6,
則△AMN的周長為6;
如圖2,△AMN的周長l=AM+MN+AN=BM+MN+NC=BC+2MN,
又BC=6,
則△AMN的周長為10,
故答案為:6或10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了創(chuàng)建全國衛(wèi)生城市,某社區(qū)要清理一個(gè)衛(wèi)生死角內(nèi)的垃圾,租用甲、乙兩車運(yùn)送,兩車各運(yùn)12趟可完成,需支付運(yùn)費(fèi)4800元.已知甲、乙兩車單獨(dú)運(yùn)完此堆垃圾,乙車所運(yùn)趟數(shù)是甲車的2倍,且乙車每趟運(yùn)費(fèi)比甲車少200元.
(1)求甲、乙兩車單獨(dú)運(yùn)完此堆垃圾各需運(yùn)多少趟?
(2)若單獨(dú)租用一臺(tái)車,租用哪臺(tái)車合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=2,點(diǎn)F是BC的中點(diǎn),點(diǎn)E是邊AB上一點(diǎn),且BE=2,連結(jié)DE,EF,并以DE,EF為邊作EFGD,連結(jié)BG,分別交EF和DC于點(diǎn)M,N,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1 是一個(gè)長為 4a、寬為 b 的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個(gè)“回形”正方形(如圖 2).
(1)圖 2 中的陰影部分的面積為 ;(用 a、b 的代數(shù)式表示)
(2)觀察圖 2 請你寫出a b2 、a b2 、ab 之間的等量關(guān)系是 ;
(3)根據(jù)⑵中的結(jié)論,若 x y 5 , x y ,則 x y2 =_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)系中,兩個(gè)量之間為反比例函數(shù)關(guān)系的是( )
A.正方形的面積S與邊長a的關(guān)系
B.正方形的周長L與邊長a的關(guān)系
C.長方形的長為a,寬為20,其面積S與a的關(guān)系
D.長方形的面積為40,長為a,寬為b,a與b的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購物券,購物券可以在本商場消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等腰直角三角形,動(dòng)點(diǎn)P在斜邊AB所在的直線上,以PC為直角邊作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解決下列問題:
(1)如圖①,若點(diǎn)P在線段AB上,且AC=1+ ,PA= ,則:
① 線段PB= , PC= ;
② 猜想:PA2 , PB2 , PQ2三者之間的數(shù)量關(guān)系為;
(2)如圖②,若點(diǎn)P在AB的延長線上,在(1)中所猜想的結(jié)論仍然成立,請你利用圖②給出證明過程;
(3)若動(dòng)點(diǎn)P滿足 = ,求 的值.(提示:請利用備用圖進(jìn)行探求)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC的底邊BC=20,面積為120,點(diǎn)F在邊BC上,且BF=3FC,EG是腰AC的垂直平分線,若點(diǎn)D在EG上運(yùn)動(dòng),則△CDF周長的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知射線AC是∠MAN的角平分線, ∠NAC=60°, B, D分別是射線AN. AM上的點(diǎn),連接BD.
(1)在圖①中,若∠ABC=∠ADC=90°,求∠CDB的大。
(2)在圖②中,若∠ABC+∠ADC=180°,求證:四邊形ABCD的面積是個(gè)定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com