8.(1)化簡:4a2+2(3ab-2a2)-(7ab-1).
(2)已知:(x+2)2+|y-1|=0,求2(xy2+x2y)-[2xy2-3(1-x2y)]-2的值.

分析 (1)原式去括號合并即可得到結(jié)果;
(2)原式去括號合并得到最簡結(jié)果,利用非負數(shù)的性質(zhì)求出x與y的值,代入計算即可求出值.

解答 解:(1)原式=4a2+6ab-4a2-7ab+1=-ab+1;
(2)原式=2xy2+2x2y-2xy2+3-3x2y-2=-x2y+1,
∵(x+2)2+|y-1|=0,
∴x=-2,y=1,
則原式=-4+1=-3.

點評 此題考查了整式的加減-化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.是否存在這樣的整數(shù)x,使它同時滿足下列兩個條件:
(1)式子$\sqrt{x-15}$和$\sqrt{18-x}$都有意義;
(2)$\sqrt{x}$的值仍是整數(shù).如果存在,求出x的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)y=-$\frac{1}{2}{x^2}$+bx+c的圖象經(jīng)過點A(-3,-6),并與x軸交于點B(-1,0)和點C,頂點為P.
(1)求二次函數(shù)的解析式及頂點P的坐標;     
(2)設(shè)點D為線段OC上一點,且∠DPC=∠BAC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

16.如圖,反比例函數(shù)y=$\frac{k}{x}$(k≠0,x>0)的圖象與直線y=3x相交于點C,過直線上點A(1,3)作AB⊥X軸于點B,交反比例函數(shù)圖象于點D,且AB=3BD
(1)求K的值;
(2)求C點的坐標;
(3)在y軸上確定一點P,使點P到C、D兩點距離之和d=PC+PD最小,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

3.探究函數(shù)y=x+$\frac{4}{x}$的圖象與性質(zhì)
(1)函數(shù)y=x+$\frac{4}{x}$的自變量x的取值范圍是x≠0;
(2)下列四個函數(shù)圖象中,函數(shù)y=x+$\frac{4}{x}$的圖象大致是C;

(3)對于函數(shù)y=x+$\frac{4}{x}$,求當x>0時,y的取值范圍.
請將下面求解此問題的過程補充完整:
解:∵x>0
∴y=x+$\frac{4}{x}$
=($\sqrt{x}$)2+($\frac{2}{\sqrt{x}}$)2
=($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2+2.
∵($\sqrt{x}$-$\frac{2}{\sqrt{x}}$)2≥0,
∴y≥2.
【拓展應(yīng)用】
(4)若函數(shù)y=$\frac{{x}^{2}+5x+4}{x}$,則y的取值范圍是y≥7.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.先化簡,再求值.
2(x-y)-3(x+y)+1,其中x=-1,y=$\frac{1}{5}$.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.計算:
(1)(-48)+8-(-25)×(-6)
(2)-22+[(3+32)×2-(-4)2].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.因式分解:
(1)5mx2-10mxy+5my2
(2)x2(a-1)+y2(1-a)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖,是由若干個完全相同的小正方體組成的一個幾何體.
(1)請畫出這個幾何體的三視圖;

(2)如果在這個幾何體上再添加一些相同的小正方體,并保持這個幾何體的主視圖和俯視圖不變,那么最多可以再添加9個小正方體.

查看答案和解析>>

同步練習(xí)冊答案