精英家教網(wǎng)在直角坐標(biāo)系中,將坐標(biāo)是(3,0)、(3,2)、(0,3)、(3,5)、(3,5)、(3,2)、(6,3)、(6,2)、(3,0)、(6,0)的點用線段依次連接起來形成一個圖案.
(1)每個點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?span id="td57lbd" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
13
,再將所得各點用線段依次連接起來,所得圖形與原圖案相比,有什么變化?
(2)作出原圖案關(guān)于x軸對稱的圖案.
(3)作出原圖案關(guān)于x軸對稱的圖案.
分析:(1)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼膋倍,則該圖形在x軸方向上放大或縮小k倍.
(2)、(3)根據(jù)題意,分別在坐標(biāo)系中找出原來的點關(guān)于x軸和y軸的對稱點,按順序連接即可.
解答:精英家教網(wǎng)解:(1)每個點的縱坐標(biāo)保持不變,橫坐標(biāo)變?yōu)樵瓉淼?span id="f7phbzh" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
3
,則所得的各點的坐標(biāo)為(1,0)、(1,2)、(0,3)、(1,5)、(1,5)、(1,2)、(2,3)、(2,2)、(1,0)、(2,0)再將各點用線段依次連接起來,所得圖形與原圖案相比,在x軸方向上被壓縮了原來的
1
3
,y軸方向不變.
(2)、(3)如下圖所示.
點評:本題主要考查了學(xué)生對點在坐標(biāo)系中的對稱問題,要求學(xué)生熟練掌握點的對稱關(guān)系同時具備一定的作圖能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將一塊腰長為2
2
cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標(biāo)為(-3,0).
(1)點A的坐標(biāo)為
(-3,2
2
(-3,2
2
,點B的坐為
(-3-2
2
,0)
(-3-2
2
,0)
;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,將一塊腰長為數(shù)學(xué)公式cm的等腰直角三角板ABC如圖放置,BC邊與x軸重合,∠ACB=90°,直角頂點C的坐標(biāo)為(-3,0).
(1)點A的坐標(biāo)為________,點B的坐為________;
(2)求以原點O為頂點且過點A的拋物線的解析式;
(3)現(xiàn)三角板ABC以1cm/s的速度沿x軸正方向平移,則平移的時間為多少秒時,三角板的邊所在直線與半徑為2cm的⊙O相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,將拋物線沿軸向上平移1個單位,再沿軸向右平移兩個單位,平移后拋物線的頂點坐標(biāo)記作A,直線與平移后的拋物線相交于B,與直線OA相交于C

(1)求△ABC面積;

(2)點P在平移后拋物線的對稱軸上,如果△ABP與△ABC相似,求所有滿足條件的P點坐標(biāo).

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省深圳市寶安區(qū)九年級第三次調(diào)研測試數(shù)學(xué) 題型:選擇題

如圖,在方格紙上建立的平面直角坐標(biāo)系中,將繞點   按順時針方向旋轉(zhuǎn),得到,則點的對應(yīng)點的坐 標(biāo)是

A.   B.   C.   D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在方格紙上建立的平面直角坐標(biāo)系中,將繞點   按順時針方向旋轉(zhuǎn),得到,則點的對應(yīng)點的坐 標(biāo)是

A.   B.   C.   D.

 

查看答案和解析>>

同步練習(xí)冊答案