【題目】如圖,在平面直角坐標系中,四邊形的頂點為坐標原點,點在軸的正半軸上,且于點,點的坐標為,,,點是線段上一點,且,連接.
(1)求證:是等邊三角形;
(2)求點的坐標;
(3)平行于的直線從原點出發(fā),沿軸正方向平移.設直線被四邊形截得的線段長為,直線與軸交點的橫坐標為.
①當直線與軸的交點在線段上(交點不與點重合)時,請直接寫出與的函數關系式(不必寫出自變量的取值范圍)
②若,請直接寫出此時直線與軸的交點坐標.
【答案】(1)見解析 (2) (3)① ②,
【解析】
(1)過點A作AM⊥x軸于點M,根據已知條件,依據三角函數求得∠AOM=60°,根據勾股定理求得OA=4,即可求得.
(2)過點A作AN⊥BC于點N,則四邊形AMCN是矩形,在Rt△ABN中,根據三角函數求得AN、BN的值,從而求得OC、BC的長,得出點B的坐標.
(3)①如圖3,因為∠B=60°,BC=4,所以PC=12,EM=m,因為OC=8,所以PO=4,OF=t,MF=m,OM=,所以PM=4+(),根據△PME∽△PCB即可求得m=.
②如圖4,△OEF是等邊三角形所以OF=EF=m=2,在Rt△PCF′中∠CF′P=60°,∠BPE′=∠CPF′=30°,所以BP=PE′÷sin∠B=,PC=,根據勾股定求得CF′=,所以OF′=.
解:(l)如圖.
證明:過點作軸于點,
∵點的坐標為,∴,,
∴在中,,∴
由勾股定理得,,
∵,∴,
∴是等邊三角形.
(2)如圖
解:過點作于點,
∵,軸,
∴,
∴四邊形為矩形,∴,,
∵,,∴在中,
,
.
∴,,
∴,,
∴點的坐標為.
(3)
①如圖3,∠B=60°,BC=4
PC=12,EM=m,
OC=8,
PO=4,OF=t,MF=m,OM=,
PM=4+(),
由△PME∽△PCB即可求得m=.
②如圖4,△OEF是等邊三角形
OF=EF=m=2,
在Rt△PCF′中∠CF′P=60°,∠BPE′=∠CPF′=30°
BP=PE′÷sin∠B=,PC=,
由勾股定求得CF′=,所以OF′=.
故答案為:,
科目:初中數學 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數量不超過A型車數量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應如何組織進貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC⊥BC,∠BAC=30°,BC=2,在AB邊的下方作射線AG,使得∠BAG=30°,E為線段DC上一個動點,在射線AG上取一點P,連接BP,使得∠EBP=60°,連接EP交AC于點F,在點E的運動過程中,當∠BPE=60°時,則AF=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+2ax+c(a≠0)與x軸交于點A,B(1,0)兩點,與y軸交于點C,且OA=OC.
(1)求拋物線的解析式;
(2)點D是拋物線頂點,求△ACD的面積;
(3)如圖2,射線AE交拋物線于點E,交y軸的負半軸于點F(點F在線段AE上),點P是直線AE下方拋物線上的一點,S△ABE=,求△APE面積的最大值和此動點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解不等式組
請結合題意,完成本題解答.
(1)解不等式①,得_________________;
(2)解不等式②,得:_________________;
(3)原不等式組的解集為_________________;
(4)把不等式組的解集在數軸上表示出來.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,DC與⊙O相切于點C,交AB的延長線于點D.
(1)求證:∠BAC=∠BCD;
(2)若BD=4,DC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在數軸上,點表示1,現將點沿軸做如下移動,第一次點向左移動3個單位長度到達,第二次將點向右移動6個單位長度到達點,第三次將點向左移動9個單位長度到達點,按照這種移動規(guī)律移動下去,第次移動到點,那么表示的數是____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com