如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“好玩三角形”
(1)請(qǐng)用直尺與圓規(guī)畫一個(gè)“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a, ∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過的路程為s
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過程中,有且只有一個(gè)△APQ能成為“好玩三角形”?請(qǐng)直接寫出tanβ的取值范圍。
(4)本小題為選做題
依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)。
(1)
(2)見解析(3)①或②(4)見解析
【解析】解:(1)作圖如下,△ABC即為所求。
(2證明:取AC的中點(diǎn)D,連接BD,
∵∠C=90°,,∴。
設(shè),由,。
∴。
∴AC=BD!唷鰽BC是“好玩三角形”。
(3)①若β=45°,當(dāng)點(diǎn)P在AB上時(shí),△APQ是等腰直角三角形,不可能是“好玩三角形”。
當(dāng)點(diǎn)P在BC上時(shí),連接AC,交PQ于點(diǎn)E,延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,
∵PC=QC,∠ACB=∠ACD,∴AC是PQ的垂直平分線。
∴AP=AQ。
∵∠CAB=∠ACP,∠AEF=∠CEP,∴△AEF∽△CEP。
∴。
∵PE=CE,∴。
。┊(dāng)?shù)走匬Q與它的中線AE相等,即AE=PQ時(shí),,∴。
ⅱ)當(dāng)腰AP與它的中線QM相等,即AP=QM時(shí),
作QN⊥AP于點(diǎn)N,∴MN=AN=PM。
∴QN=MN。
∴。
∴。
∴。
綜上所述,的值為或。
②。
(4)若,則在點(diǎn)P,Q的運(yùn)動(dòng)過程中,使得△APQ是“好玩三角形”的個(gè)數(shù)為2。
(1)作邊AB,取AB中點(diǎn)D,以點(diǎn)D 為圓心,AB長(zhǎng)畫圓,圓上異于點(diǎn)A、B 的任一點(diǎn)C與點(diǎn)A、B連成的三角形就是“好玩三角形”。
(2)取AC的中點(diǎn)D,連接BD,應(yīng)用銳角三角函數(shù)定義和勾股定理證明AC=BD即可。
(3)①先確定當(dāng)點(diǎn)P在BC上時(shí)才可能使△APQ是“好玩三角形”,從而分底邊PQ與它的中線AE相等和腰AP與它的中線QM相等兩種情況求解。
②由①知兩上臨界點(diǎn)和2,即可得出結(jié)論。
(4)在點(diǎn)P,Q的運(yùn)動(dòng)過程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系如下:
tanβ的取值范圍 |
“好玩三角形”的個(gè)數(shù) |
2 |
|
1 |
|
0 |
|
無數(shù)個(gè) |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| ||
2 |
a |
s |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省臺(tái)州市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044
如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“好玩三角形”
(1)請(qǐng)用直尺與圓規(guī)畫一個(gè)“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過的路程為S
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過程中,有且只有一個(gè)△APQ能成為“好玩三角形”請(qǐng)直接寫出tanβ的取值范圍.
(4)本小題為選做題
依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(帶解析) 題型:解答題
如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“好玩三角形”
(1)請(qǐng)用直尺與圓規(guī)畫一個(gè)“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a, ∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過的路程為s
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過程中,有且只有一個(gè)△APQ能成為“好玩三角形”?請(qǐng)直接寫出tanβ的取值范圍。
(4)本小題為選做題
依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省臺(tái)州市中考數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com