如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“好玩三角形”.
(1)請(qǐng)用直尺和圓規(guī)畫(huà)一個(gè)“好玩三角形”;
(2)如圖在Rt△ABC中,∠C=90°,tanA=,求證:△ABC是“好玩三角形”;
(3))如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過(guò)的路程為s.
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”.請(qǐng)直接寫(xiě)出tanβ的取值范圍.
(4)(本小題為選做題,作對(duì)另加2分,但全卷滿(mǎn)分不超過(guò)150分)
依據(jù)(3)的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)

【答案】分析:(1)先畫(huà)一條線段AB,再確定AB的中點(diǎn)O,過(guò)點(diǎn)O作一條線段OC使OC=AB,連接AC、BC,則△ABC是所求作的三角形;
(2)取AC的中點(diǎn)D,連接BD,設(shè)BC=x,根據(jù)條件可以求出AC=2x,由三角函數(shù)可以求出BD=2x,從而得出AC=BC,從而得出結(jié)論;
(3)①當(dāng)β=45°時(shí),分情況討論,P點(diǎn)在AB上時(shí),△APQ是等腰直角三角形,不可能是“好玩三角形”,當(dāng)P在BC上時(shí),延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,可以求出分情況討論,就可以求出,再分情況討論就可以求出當(dāng)AE=PQ時(shí),的值,當(dāng)AP=QM時(shí),可以求出的值;
②根據(jù)①求出的兩個(gè)的值就可以求出tanβ的取值范圍;
(4)由(3)可以得出0<tanβ<,△APQ為“好玩三角形”的個(gè)數(shù)為2就是真命題.
解答:解:(1)如圖1,①作一條線段AB,
②作線段AB的中點(diǎn)O,
③作線段OC,使OC=AB,
④連接AC、BC,
∴△ABC是所求作的三角形.

(2)如圖2,取AC的中點(diǎn)D,連接BD
∵∠C=90°,tanA=,

∴設(shè)BC=x,則AC=2x,
∵D是AC的中點(diǎn),
∴CD=AC=x
∴BD===2x,
∴AC=BD
∴△ABC是“好玩三角形”;

(3)①如圖3,當(dāng)β=45°,點(diǎn)P在AB上時(shí),
∴∠ABC=2β=90°,
∴△APQ是等腰直角三角形,不可能是“好玩三角形”,
當(dāng)P在BC上時(shí),連接AC交PQ于點(diǎn)E,延長(zhǎng)AB交QP的延長(zhǎng)線于點(diǎn)F,
∵PC=CQ,
∴∠CAB=∠ACP,∠AEF=∠CEP,
∴△AEF∽△CEP,

∵PE=CE,

Ⅰ當(dāng)?shù)走匬Q與它的中線AE相等時(shí),即AE=PQ時(shí),
,

Ⅱ當(dāng)腰AP與它的中線QM相等,即AP=QM時(shí),
作QN⊥AP于N,如圖4
∴MN=AN=MP.
∴QN=MN,
∴tan∠APQ=,
∴tan∠APE===
=
②由①可知,當(dāng)AE=PQ和AP=QM時(shí),有且只有一個(gè)△APQ能成為“好玩三角形”,
<tanβ<2時(shí),有且只有一個(gè)△APQ能成為“好玩三角形”.

(4)由(3)可以知道0<tanβ<,
則在P、Q的運(yùn)動(dòng)過(guò)程中,使得△APQ成為“好玩三角形”的個(gè)數(shù)為2.
點(diǎn)評(píng):本題是一道相似形綜合運(yùn)用的試題,考查了相似三角形的判定及性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,等腰直角三角形的性質(zhì)的運(yùn)用,等腰三角形的性質(zhì)的運(yùn)用,銳角三角形函數(shù)值的運(yùn)用,解答時(shí)靈活運(yùn)用三角函數(shù)值建立方程求解是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•臺(tái)州)如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“好玩三角形”.
(1)請(qǐng)用直尺和圓規(guī)畫(huà)一個(gè)“好玩三角形”;
(2)如圖在Rt△ABC中,∠C=90°,tanA=
3
2
,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P經(jīng)過(guò)的路程為s.
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求
a
s
的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”.請(qǐng)直接寫(xiě)出tanβ的取值范圍.
(4)(本小題為選做題,作對(duì)另加2分,但全卷滿(mǎn)分不超過(guò)150分)
依據(jù)(3)的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是‘好玩三角形’的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年浙江省臺(tái)州市高級(jí)中等學(xué)校招生考試數(shù)學(xué) 題型:044

如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“好玩三角形”

(1)請(qǐng)用直尺與圓規(guī)畫(huà)一個(gè)“好玩三角形”;

(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;

(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a,∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過(guò)的路程為S

①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值

②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”請(qǐng)直接寫(xiě)出tanβ的取值范圍.

(4)本小題為選做題

依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(帶解析) 題型:解答題

如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“好玩三角形”

(1)請(qǐng)用直尺與圓規(guī)畫(huà)一個(gè)“好玩三角形”;
(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;
(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a, ∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過(guò)的路程為s
①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;
②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”?請(qǐng)直接寫(xiě)出tanβ的取值范圍。
(4)本小題為選做題
依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年初中畢業(yè)升學(xué)考試(浙江臺(tái)州卷)數(shù)學(xué)(解析版) 題型:解答題

如果三角形有一邊上的中線長(zhǎng)恰好等于這邊的長(zhǎng),那么稱(chēng)這個(gè)三角形為“好玩三角形”

(1)請(qǐng)用直尺與圓規(guī)畫(huà)一個(gè)“好玩三角形”;

(2)如圖1,在Rt△ABC中,∠C=90°,,求證:△ABC是“好玩三角形”;

(3)如圖2,已知菱形ABCD的邊長(zhǎng)為a, ∠ABC=2β,點(diǎn)P,Q從點(diǎn)A同時(shí)出發(fā),以相同的速度分別沿折線AB-BC和AD-DC向終點(diǎn)C運(yùn)動(dòng),記點(diǎn)P所經(jīng)過(guò)的路程為s

①當(dāng)β=45°時(shí),若△APQ是“好玩三角形”,試求的值;

②當(dāng)tanβ的取值在什么范圍內(nèi),點(diǎn)P,Q在運(yùn)動(dòng)過(guò)程中,有且只有一個(gè)△APQ能成為“好玩三角形”?請(qǐng)直接寫(xiě)出tanβ的取值范圍。

(4)本小題為選做題

依據(jù)(3)中的條件,提出一個(gè)關(guān)于“在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,tanβ的取值范圍與△APQ是“好玩三角形”的個(gè)數(shù)關(guān)系”的真命題(“好玩三角形”的個(gè)數(shù)限定不能為1)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案