【題目】正方形ABCD中,EF分別是AB、CB上的點,且AECFCEAFM,∠CMF45°,則的值為(  )

A.B.C.D.

【答案】A

【解析】

首先利用正方形性質(zhì)得出ABBC,從而得出BEBF,然后進一步證明△ABF與△CBE全等,此后再通過證明△AEM與△CFM全等得出AMCM,EMFM,進一步證明出點M在點A和點C的對稱軸上,連接BD,過MMGBCG,通過證明△CMG與△CEB相似,然后進一步利用相似三角形性質(zhì)求解即可.

∵在正方形ABCD中,

ABBC

AECF,

BEBF,

在△ABF與△CBE中,

AB=CB,∠ABF=CBE,BF=BE,

∴△ABFCBESAS),

∴∠BAF=∠BCE,

在△AEM與△CFM中,

∵∠AME=CMF,∠EAM=FCM,AE=CF,

∴△AEMCFMAAS),

AMCM,EMFM,

∴點M在點A和點C的對稱軸上,

如圖,連接BD,過MMGBCG,

則點MBD上,

∴∠ABM=∠CBM45°,

∵∠AME=∠CMF45°

∴∠AME=∠CBM,

∴∠BEM=∠BAM+AME=∠BME=∠CBM+BCM=∠BME

BEBM,

MGBC

BGGM,

設(shè)BGGM

BEBM,

MGBE

∴△CMG~CEB,

,

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE∥BC,EF∥AB.

(1)求證:△ADE∽△EFC;

(2)如果AB=6,AD=4,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點A、B、C.

(1)請完成如下操作:

①以點O為原點、豎直和水平方向為軸、網(wǎng)格邊長為單位長,建立平面直角坐標系;

②根據(jù)圖形提供的信息,在圖中標出該圓弧所在圓的圓心D.

(2)請在(1)的基礎(chǔ)上,完成下列填空:

①寫出點的坐標:D( );

②⊙D的半徑= (結(jié)果保留根號);

③利用網(wǎng)格試在圖中找出格點E ,使得直線EC與⊙D相切(寫出所有可能的結(jié)果).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寬與長的比是(約為0.618)的矩形叫做黃金矩形,黃金矩形蘊藏著豐富的美學價值,給我們以協(xié)調(diào)和勻稱的美感.我們可以用這樣的方法畫出黃金矩形:如圖,作正方形ABCD,分別取ADBC的中點E,F,連接EF,DF,作∠DFC的平分線,交AD的延長線于點H,作HGBC,交BC的延長線于點G,則下列矩形是黃金矩形的是( 。

A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點O為正方形ABCD 的中心,EAB 邊上一點,FBC邊上一點,EBF的周長等于 BC 的長.

(1)求∠EOF 的度數(shù).

(2)連接 OAOC(如圖2).求證:AOECFO.

(3)OE=OF,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,九年級(1)班的小明與小艷兩位同學去操場測量旗桿DE的高度已知直立在地面上的竹竿AB的長為3 m某一時刻,測得竹竿AB在陽光下的投影BC的長為2 m.

(1)請你在圖中畫出此時旗桿DE在陽光下的投影并寫出畫圖步驟;

(2)在測量竹竿AB的影長時同時測得旗桿DE在陽光下的影長為6 m,請你計算旗桿DE的高度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點從點出發(fā)沿方向以的速度向點勻速運動,同時點從點出發(fā)沿方向以的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點運動的時間是.過點于點,連接

1)求證:;

2)四邊形能夠成為菱形嗎?如果能,求出相應(yīng)的值,如果不能,說明理由:

3)當為何值時,為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】寶安區(qū)的某商場經(jīng)市場調(diào)查,預計一款夏季童裝能獲得市場青睞,便花費 15000 元購進了一批此款童裝,上市后很快售罄.該店決定繼續(xù)進貨,由于第二批進貨數(shù)量是第一批進貨數(shù)量的 2 倍,因此單價便宜了 10 元,購進第二批童裝一共花費了 27000 元.

(1)該店所購進的第一批童裝的單價是多少元?

(2)兩批童裝按相同標價出售,經(jīng)理根據(jù)市場情況,決定對第二批剩余的 100 件打七折銷售.若兩批童裝全部售完后,利潤不低于 30%,那么每件童裝標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校將開啟“大閱讀”活動,為了充實書吧藏書,學生會號召全年級學生捐書,得到各班的大力支持.同時,年級部分備課組的老師也購買藏書充實到年級書吧,其中數(shù)學組購買了甲、乙兩種自然科學書籍若干本,用去699元;語文組購買了A、B兩種文學書籍若干本,用去6138元,已知A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價相同,乙種書與A種書的單價相同,若甲種書的單價比乙種書的單價多7元,則乙種書籍比甲種書籍多買了_____本.

查看答案和解析>>

同步練習冊答案