【題目】寬與長(zhǎng)的比是(約為0.618)的矩形叫做黃金矩形,黃金矩形蘊(yùn)藏著豐富的美學(xué)價(jià)值,給我們以協(xié)調(diào)和勻稱(chēng)的美感.我們可以用這樣的方法畫(huà)出黃金矩形:如圖,作正方形ABCD,分別取AD,BC的中點(diǎn)EF,連接EF,DF,作∠DFC的平分線,交AD的延長(zhǎng)線于點(diǎn)H,作HGBC,交BC的延長(zhǎng)線于點(diǎn)G,則下列矩形是黃金矩形的是( 。

A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH

【答案】C

【解析】

設(shè)正方形ABCD的邊長(zhǎng)為2,根據(jù)勾股定理求出DF,根據(jù)黃金矩形的概念判斷即可.

解:設(shè)正方形ABCD的邊長(zhǎng)為2,

∵點(diǎn)E,F分別為AD,BC的中點(diǎn),

,DF

∴矩形ABFE不是黃金矩形,A錯(cuò)誤;

同理,矩形EFCD不是黃金矩形,B錯(cuò)誤;

FH是∠DFC的平分線,

∴∠DFH=∠GFH,

AHBG,

∴∠DFH=∠GFH,

∴∠DHF=∠GFH

∴∠DFH=∠DHF,

DHDF

,

∴矩形EFGH是黃金矩形,C正確;

∴矩形DCGH不是黃金矩形,D錯(cuò)誤;

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分9分)

為了考察甲、乙兩種成熟期小麥的株高長(zhǎng)勢(shì)狀況,現(xiàn)從中各隨機(jī)抽取6株,并測(cè)得它們的株高(單位:cm)如下表所示:

63

66

63

61

64

61

63

65

60

63

64

63

(1)請(qǐng)分別計(jì)算表內(nèi)兩組數(shù)據(jù)的方差,并借此比較哪種小麥的株高長(zhǎng)勢(shì)比較整齊?

(2)現(xiàn)將進(jìn)行兩種小麥優(yōu)良品種雜交試驗(yàn),需從表內(nèi)的甲、乙兩種小麥中,各隨機(jī)抽取一株進(jìn)行配對(duì),以預(yù)估整體配對(duì)狀況.請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求所抽取的兩株配對(duì)小麥株高恰好都等于各自平均株高的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)騎車(chē)從家到學(xué)校要經(jīng)過(guò)一段先上坡后下坡的路,在這段路上小強(qiáng)騎車(chē)的距離s(千米)與騎車(chē)的時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示,請(qǐng)根據(jù)圖中信息回答下列問(wèn)題:

(1)小強(qiáng)去學(xué)校時(shí)下坡路長(zhǎng) 千米;

(2)小強(qiáng)下坡的速度為 千米/分鐘;

(3)若小強(qiáng)回家時(shí)按原路返回,且上坡的速度不變,下坡的速度也不變,那么回家騎車(chē)走這段路的時(shí)間是 分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB的長(zhǎng)為10,弦AC的長(zhǎng)為5,∠ACB的平分線交O于點(diǎn)D.

(1)∠ADC的度數(shù);

(2)求弦BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市城建公司新建了一個(gè)購(gòu)物中心,共有商鋪30間,據(jù)調(diào)查分析,當(dāng)每間的年租金為10萬(wàn)元時(shí),可全部租出:若每間的年租金每增加0.5萬(wàn)元,則少租出商鋪一間,為提供優(yōu)質(zhì)服務(wù),城建公司引入物業(yè)公司代為管理,租出的商鋪每間每年需向物業(yè)公司繳納物業(yè)費(fèi)1萬(wàn)元,未租出的商鋪不需要向物業(yè)公司繳納物業(yè)費(fèi).

(1)當(dāng)每間商鋪的年租金定為13萬(wàn)元時(shí),能租出   間.

(2)當(dāng)每問(wèn)商鋪的年租金定為多少萬(wàn)元時(shí),該公司的年收益為286萬(wàn)元,且使租客獲得實(shí)惠?(收益=租金﹣物業(yè)費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點(diǎn)E在AD邊上,且AE=8,EF⊥BE交CD于點(diǎn)F.

(1)求證:△ABE∽△DEF;

(2)求CF的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD中,EF分別是AB、CB上的點(diǎn),且AECF,CEAFM,∠CMF45°,則的值為(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù) yax+bx+ca≠0)的圖象如圖所示,A(﹣ 1,3)是拋物線的頂點(diǎn),則以下結(jié)論中正確的是(

A. a<0,b>0,c>0

B. 2a+b=0

C. 當(dāng) x<0 時(shí)y x 的增大而減小

D. ax2+bx+c﹣3≤0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型介紹)

如圖①,C是線段A、B上一點(diǎn)E、FAB同側(cè),且∠A=B=ECF=90°,看上去像一個(gè)“K“,我們稱(chēng)圖①為“K”型圖.

(性質(zhì)探究)

性質(zhì)1:如圖①,若EC=FC,ACE≌△BFC

性質(zhì)2:如圖①,若EC≠FC,ACE~BFC且相似比不為1.

(模型應(yīng)用)

應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.

應(yīng)用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AHBC,連接EF.交AH的反向延長(zhǎng)線于點(diǎn)K,證明:KEF中點(diǎn).

(1)請(qǐng)你完成性質(zhì)1的證明過(guò)程;

(2)請(qǐng)分別解答應(yīng)用1,應(yīng)用2提出的問(wèn)題.

查看答案和解析>>

同步練習(xí)冊(cè)答案