【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是(
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當(dāng)x< ,y隨x的增大而減小
D.當(dāng)﹣1<x<2時,y>0

【答案】D
【解析】解:A、由拋物線的開口向上,可知a>0,函數(shù)有最小值,正確,故A選項不符合題意; B、由圖象可知,對稱軸為x= ,正確,故B選項不符合題意;
C、因為a>0,所以,當(dāng)x< 時,y隨x的增大而減小,正確,故C選項不符合題意;
D、由圖象可知,當(dāng)﹣1<x<2時,y<0,錯誤,故D選項符合題意.
故選:D.
根據(jù)拋物線的開口方向,利用二次函數(shù)的性質(zhì)判斷A;
根據(jù)圖形直接判斷B;
根據(jù)對稱軸結(jié)合開口方向得出函數(shù)的增減性,進(jìn)而判斷C;
根據(jù)圖象,當(dāng)﹣1<x<2時,拋物線落在x軸的下方,則y<0,從而判斷D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y1= 與一次函數(shù)y2=k2x+b的圖象交于點A(1,8),B(﹣4,m)兩點.
(1)求k1 , k2 , b的值;
(2)求△AOB的面積;
(3)請直接寫出不等式 x+b的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在﹣ ,0,﹣2, ,1中,絕對值最大的數(shù)為(
A.0
B.﹣
C.﹣2
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C(0,﹣ ),頂點為D,對稱軸與x軸交于點H,過點H的直線l交拋物線于P,Q兩點,點Q在y軸的右側(cè).

(1)求a的值及點A,B的坐標(biāo);
(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時,求直線l的函數(shù)表達(dá)式;
(3)當(dāng)點P位于第二象限時,設(shè)PQ的中點為M,點N在拋物線上,則以DP為對角線的四邊形DMPN能否為菱形?若能,求出點N的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明的口袋里裝有分別標(biāo)有漢字“幸”、“!、“濟(jì)”、“寧”的四個小球,除漢字不同之外,小球沒有任何區(qū)別,每次摸球前先攪拌均勻再摸球.
(1)若從中任取一個球,球上的漢字剛好是“!钡母怕蕿槎嗌伲
(2)小穎從中任取一球,記下漢字后放回袋中,然后再從中任取一球,求小穎取出的兩個球上漢字恰能組成“幸福”或“濟(jì)寧”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明想測山高和索道的長度.他在B處仰望山頂A,測得仰角∠B=31°,再往山的方向(水平方向)前進(jìn)80m至索道口C處,沿索道方向仰望山頂,測得仰角∠ACE=39°.

(1)求這座山的高度(小明的身高忽略不計);
(2)求索道AC的長(結(jié)果精確到0.1m).
(參考數(shù)據(jù):tan31°≈ ,sin31°≈ ,tan39°≈ ,sin39°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BC與x軸平行,A,B兩點的縱坐標(biāo)分別為3,1,反比例函數(shù)y= 的圖象經(jīng)過A,B兩點,則菱形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DE是⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC= , CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=ax+b與雙曲線y=(x>0)交于A(x1 , y1),B(x2 , y2)兩點(A與B不重合),直線AB與x軸交于P(x0 , 0),與y軸交于點C.

(1)若A,B兩點坐標(biāo)分別為(1,3),(3,y2),求點P的坐標(biāo).
(2)若b=y1+1,點P的坐標(biāo)為(6,0),且AB=BP,求A,B兩點的坐標(biāo).
(3)結(jié)合(1),(2)中的結(jié)果,猜想并用等式表示x1 , x2 , x0之間的關(guān)系(不要求證明).

查看答案和解析>>

同步練習(xí)冊答案