【題目】如圖,DE是⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC= , CD= .
【答案】4;9
【解析】解:連接OA, ∵直徑DE⊥AB,且AB=6
∴AC=BC=3,
設(shè)圓O的半徑OA的長為x,則OE=OD=x
∵CE=1,
∴OC=x﹣1,
在Rt△AOC中,根據(jù)勾股定理得:
x2﹣(x﹣1)2=32 , 化簡得:x2﹣x2+2x﹣1=9,
即2x=10,
解得:x=5
所以O(shè)E=5,則OC=OE﹣CE=5﹣1=4,CD=OD+OC=9.
所以答案是:4;9
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼膎倍,得△AB′C′,如圖①所示,∠BAB′=θ, = = =n,我們將這種變換記為[θ,n].
(1)如圖①,對△ABC作變換[60°, ]得到△AB′C′,則S△AB'C:S△ABC=;直線BC與直線B′C′所夾的銳角為度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點(diǎn)B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯(cuò)誤的是( )
A.函數(shù)有最小值
B.對稱軸是直線x=
C.當(dāng)x< ,y隨x的增大而減小
D.當(dāng)﹣1<x<2時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF,連接DE,過點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C.
(1)請判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是;
(2)如圖2,若點(diǎn)E、F分別是CB、BA延長線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.已知二次函數(shù)y=﹣x2+bx+3的圖象與x軸的一個(gè)交點(diǎn)為A(4,0),與y軸交于點(diǎn)B.
(1)求此二次函數(shù)關(guān)系式和點(diǎn)B的坐標(biāo);
(2)在x軸的正半軸上是否存在點(diǎn)P.使得△PAB是以AB為底邊的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖1,圖形①滿足AD=AB,MD=MB,∠A=72°,∠M=144°.圖形②與圖形①恰好拼成一個(gè)菱形(如圖2).記AB的長度為a,BM的長度為b.
(1)圖形①中∠B=°,圖形②中∠E=°;
(2)小明有兩種紙片各若干張,其中一種紙片的形狀及大小與圖形①相同,這種紙片稱為“風(fēng)箏一號”;另一種紙片的形狀及大小與圖形②相同,這種紙片稱為“飛鏢一號”. ①小明僅用“風(fēng)箏一號”紙片拼成一個(gè)邊長為b的正十邊形,
需要這種紙片張;
②小明若用若干張“風(fēng)箏一號”紙片和“飛鏢一號”紙片拼成一個(gè)“大風(fēng)箏”(如圖3),其中∠P=72°,∠Q=144°,且PI=PJ=a+b,IQ=JQ.請你在圖3中畫出拼接線并保留畫圖痕跡.(本題中均為無重疊、無縫隙拼接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線y1=2x﹣2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線y2=(x>0)交于點(diǎn)C,過點(diǎn)C作CD⊥x軸,垂足為D,且OA=AD,則以下結(jié)論:
①S△ADB=S△ADC;
②當(dāng)0<x<3時(shí),y1<y2;
③如圖,當(dāng)x=3時(shí),EF=;
④當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減小.
其中正確結(jié)論的個(gè)數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品的進(jìn)價(jià)為40元/件,以獲利不低于25%的價(jià)格銷售時(shí),商品的銷售單價(jià)y(元/件)與銷售數(shù)量x(件)(x是正整數(shù))之間的關(guān)系如下表:
x(件) | … | 5 | 10 | 15 | 20 | … |
y(元/件) | … | 75 | 70 | 65 | 60 | … |
(1)由題意知商品的最低銷售單價(jià)是___元,當(dāng)銷售單價(jià)不低于最低銷售單價(jià)時(shí),y是x的一次函數(shù).求出y與x的函數(shù)關(guān)系式及x的取值范圍;
(2)在(1)的條件下,當(dāng)銷售單價(jià)為多少元時(shí),所獲銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線l⊥AB于點(diǎn)B,點(diǎn)C在AB上,且AC:CB=2:1,點(diǎn)M是直線l上的動(dòng)點(diǎn),作點(diǎn)B關(guān)于直線CM的對稱點(diǎn)B′,直線AB′與直線CM相交于點(diǎn)P,連接PB.
(1)如圖2,若點(diǎn)P與點(diǎn)M重合,則∠PAB= , 線段PA與PB的比值為
(2)如圖3,若點(diǎn)P與點(diǎn)M不重合,設(shè)過P,B,C三點(diǎn)的圓與直線AP相交于D,連接CD,求證:①CD=CB′;②PA=2PB
(3)如圖4,若AC=2,BC=1,則滿足條件PA=2PB的點(diǎn)都在一個(gè)確定的圓上,在以下小題中選做一題:
①如果你能發(fā)現(xiàn)這個(gè)確定的圓的圓心和半徑,那么不必寫出發(fā)現(xiàn)過程,只要證明這個(gè)圓上的任意一點(diǎn)Q,都滿足QA=2QB;
②如果你不能發(fā)現(xiàn)這個(gè)確定的圓的圓心和半徑,那么請取出幾個(gè)特殊位置的P點(diǎn),如點(diǎn)P在直線AB上,點(diǎn)P與點(diǎn)M重合等進(jìn)行探究,求這個(gè)圓的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com