【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B6,0)的直線AB與直線OA相交于點(diǎn)A4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).

1)求直線AB的解析式.

2)求△OAC的面積.

3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說明理由.

【答案】1y=﹣x+6;(2SOAC12;(3)存在,M的坐標(biāo)是:M11,)或M215)或M3(﹣1,7

【解析】

1)利用待定系數(shù)法即可求得函數(shù)的解析式;

2)求得C的坐標(biāo),即OC的長,利用三角形的面積公式即可求解;

3)當(dāng)△OMC的面積是△OAC的面積的時(shí),根據(jù)面積公式即可求得M的橫坐標(biāo),然后代入解析式即可求得M的坐標(biāo).

解:(1)設(shè)直線AB的解析式是,

根據(jù)題意得:,

解得:

則直線的解析式是:;

2)在y=﹣x+6中,令x0,解得:y6,

;

3)設(shè)OA的解析式是ymx,則4m2,

解得:,

則直線的解析式是:,

∵當(dāng)△OMC的面積是△OAC的面積的時(shí),

∴當(dāng)M的橫坐標(biāo)是,

中,當(dāng)x1時(shí),y,則M的坐標(biāo)是;

中,x1y5,則M的坐標(biāo)是(1,5).

M的坐標(biāo)是:M11,)或M21,5).

當(dāng)M的橫坐標(biāo)是:﹣1,

中,當(dāng)x=﹣1時(shí),y7,則M的坐標(biāo)是(﹣1,7);

綜上所述:M的坐標(biāo)是:M11,)或M215)或M3(﹣1,7).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家蔬菜公司收購到某種綠色蔬菜140噸,準(zhǔn)備加工后進(jìn)行銷售,銷售后獲利的情況如下表所示:

銷售方式

粗加工后銷售

精加工后銷售

每噸獲利()

1000

2000

已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時(shí)進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時(shí)間內(nèi)將這批蔬菜全部加工后銷售完.

1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?

2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.

試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關(guān)系式;

若要求在不超過10天的時(shí)間內(nèi),將140噸蔬菜全部加工完后進(jìn)行銷售,則加工這批蔬菜最多獲得多少利潤?此時(shí)如何分配加工時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于A、B兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)AB重合),過點(diǎn)Py軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求b、c的值.

2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.

3)當(dāng)點(diǎn)PA、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長為C,求Cm之間的函數(shù)關(guān)系式,并寫出Cm增大而增大時(shí)m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某城市對(duì)居民生活用水按以下規(guī)定收取每月的水費(fèi):家庭月用水量如果不超過8噸,按每噸2.5元收費(fèi);如果超過8噸,未超過的部分仍按每噸2.5元收取,而超過部分則按每噸4元收。

1)設(shè)某家庭月用水量為x噸,水費(fèi)為y元,請(qǐng)寫出yx之間的函數(shù)解析式,并在給定的平面直角坐標(biāo)系中,畫出該函數(shù)的圖象;

2)如果小明家按題中規(guī)定今年3月份應(yīng)繳水費(fèi)34元,那么今年3月份小明家用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x+2x軸、y軸分別于點(diǎn)A、B,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣,且拋物線經(jīng)過A、B兩點(diǎn),交x軸于另一點(diǎn)C.

(1)求拋物線的解析式;

(2)點(diǎn)M是拋物線x軸上方一點(diǎn),∠MBA=CBO,求點(diǎn)M的坐標(biāo);

(3)過點(diǎn)AAB的垂線交y軸于點(diǎn)D,平移直線AD交拋物線于點(diǎn)E、F兩點(diǎn),連結(jié)EO、FO.若△EFO為以EF為斜邊的直角三角形,求平移后的直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象經(jīng)過點(diǎn)A(﹣1,6).

(1)求m的值;

(2)如圖,過點(diǎn)A作直線AC與函數(shù)y=的圖象交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為(  )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型介紹)

如圖①,C是線段A、B上一點(diǎn)E、FAB同側(cè),且∠A=B=ECF=90°,看上去像一個(gè)“K“,我們稱圖①為“K”型圖.

(性質(zhì)探究)

性質(zhì)1:如圖①,若EC=FC,ACE≌△BFC

性質(zhì)2:如圖①,若EC≠FC,ACE~BFC且相似比不為1.

(模型應(yīng)用)

應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.

應(yīng)用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AHBC,連接EF.交AH的反向延長線于點(diǎn)K,證明:KEF中點(diǎn).

(1)請(qǐng)你完成性質(zhì)1的證明過程;

(2)請(qǐng)分別解答應(yīng)用1,應(yīng)用2提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

同步練習(xí)冊(cè)答案