【題目】已知:如圖,ABC是邊長(zhǎng)為3cm等邊三角形,動(dòng)點(diǎn)P、Q分別同時(shí)從AB兩點(diǎn)出發(fā),分別沿AB、BC方向勻速移動(dòng),點(diǎn)P速度為1cm/s,點(diǎn)Q的速度為2cm/s,當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s)

⑴當(dāng)t為何值時(shí),PBQ是直角三角形?

⑵△PBQ能否成為等邊三角形?若能,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.

【答案】1t=0.61.5時(shí),PBQ是直角三角形;(2)當(dāng)t=1時(shí),△BPQ是等邊三角形,理由見(jiàn)解析.

【解析】

1)根據(jù)等邊三角形的性質(zhì)可得∠B=60°,分情況進(jìn)行討論:①∠BPQ=90°;②∠BQP=90°.然后在直角三角形BQP中根據(jù)30°所對(duì)的直角邊是斜邊的一半建立方程求解;

2)根據(jù)等邊三角形的性質(zhì)可得方程3-t=2t,解方程求解即可.

1)根據(jù)題意得AP=tcm,BQ=2tcm,

∵在△ABC,AB=BC=3cm,B=60°,

BP=(3t)cm,

在△PBQ中,BP=3t,BQ=2t,若△PBQ是直角三角形,則

BQP=90°或∠BPQ=90°,

當(dāng)∠BQP=90°時(shí),BQ=BP,

2t= (3t),t=0.6,

當(dāng)∠BPQ=90°時(shí),BP=BQ,

3t=×2tt=1.5

當(dāng)t=0.61.5時(shí),△PBQ是直角三角形.

2)當(dāng)△BPQ為等邊三角形時(shí),

BP=PQ=BQ,

3t=2t

解得t=1.

故當(dāng)t=1時(shí),△BPQ是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過(guò)CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,D是BC邊上一點(diǎn)∠1=∠2,∠3=∠4,∠BAC=69°,求∠DAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=( 。

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,△ABC中,AB=AC=6,∠A=45°,點(diǎn)DAC上,點(diǎn)EBD上,且△ABD、△CDE、△BCE均為等腰三角形.

1)求∠EBC的度數(shù);

2)求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知二次函數(shù)y=mx2+3mx﹣m的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),頂點(diǎn)D和點(diǎn)B關(guān)于過(guò)點(diǎn)A的直線l:y=﹣x﹣對(duì)稱(chēng).

(1)求A、B兩點(diǎn)的坐標(biāo)及二次函數(shù)解析式;

(2)如圖2,作直線AD,過(guò)點(diǎn)BAD的平行線交直線1于點(diǎn)E,若點(diǎn)P是直線AD上的一動(dòng)點(diǎn),點(diǎn)Q是直線AE上的一動(dòng)點(diǎn).連接DQ、QP、PE,試求DQ+QP+PE的最小值;若不存在,請(qǐng)說(shuō)明理由:

(3)將二次函數(shù)圖象向右平移個(gè)單位,再向上平移3個(gè)單位,平移后的二次函數(shù)圖象上存在一點(diǎn)M,其橫坐標(biāo)為3,在y軸上是否存在點(diǎn)F,使得∠MAF=45°?若存在,請(qǐng)求出點(diǎn)F坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,現(xiàn)將折疊,使點(diǎn)、兩點(diǎn)重合,折痕所在的直線與直線的夾角為,則的大小為__________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點(diǎn)E.且ODAC,垂足為點(diǎn)F.

(1)如圖1,如果AC=BD,求弦AC的長(zhǎng);

(2)如圖2,如果E為弦BD的中點(diǎn),求∠ABD的余切值;

(3)聯(lián)結(jié)BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)軸上一點(diǎn),點(diǎn)、軸上,且、滿足等式.

1)求的值;

2)若點(diǎn)坐標(biāo)為,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿射線運(yùn)動(dòng),連接,設(shè)點(diǎn)的縱坐標(biāo)為,的面積為,求的關(guān)系式,并直接寫(xiě)出的取值范圍;

3)當(dāng)點(diǎn)在線段上,點(diǎn)是線段的延長(zhǎng)線上一點(diǎn),連接,,若的周長(zhǎng)差為 2,點(diǎn)軸上一點(diǎn),若是以為頂角的等腰三角形,求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案