【題目】已知:點A在射線CE上,∠C=∠D

1)如圖1,若AC∥BD,求證:AD∥BC;

2)如圖2,若∠BAC=∠BAD,BD⊥BC,請?zhí)骄?/span>∠DAE∠C的數(shù)量關系,寫出你的探究結論,并加以證明;

3)如圖3,在(2)的條件下,過點DDF∥BC交射線于點F,當∠DFE=8∠DAE時,求∠BAD的度數(shù).

【答案】(1)詳見解析;(2)∠EAD+2∠C=90°,證明詳見解析;(399°

【解析】試題分析: 根據(jù)ACBD,得到根據(jù)等量代換得到即可判定ADBC;

根據(jù)外角的性質(zhì)得到又因為

根據(jù)三角形的內(nèi)角和得到即可得到它們的關系.

根據(jù)平行線的性質(zhì)根據(jù)第問的結論求出的度數(shù),根據(jù)內(nèi)角和求出的度數(shù).

試題解析:

1)如圖1,

ACBD,

又∵

ADBC;

2

證明:如圖2,設CEBD交點為G

是外角,

中,

3)如圖3,設

DFBC,

中,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx4k0)的圖象與y軸交于點A,與反比例函數(shù)yx0)的圖象交于點B6b).

1b__________;k__________

2)點C是直線AB上的動點(與點A,B不重合),過點C且平行于y軸的直線l交這個反比例函數(shù)的圖象于點D,當點C的橫坐標為3時,得OCD,現(xiàn)將OCD沿射線AB方向平移一定的距離(如圖),得到OCD,若點O的對應點O落在該反比例函數(shù)圖象上,求點O,D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A=15°,AB=BC=CD=DE=EF,則DEF等于( )

A.90° B.75° C.70° D.60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、FE、G都在△ABC的邊上,EF∥AD∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)

解:∵EF∥AD,(已知)

∴∠2=      

∵∠1=∠2,(已知)

∴∠1=   (等量代換)

      ,(   

∴∠AGD+   =180°,(兩直線平行,同旁內(nèi)角互補)

∵∠CAB=70° ,(已知)

∴∠AGD=   (等式性質(zhì))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形邊長為1的方格紙中,△ABC的頂點都在方格紙格點上.將△ABC向左平移2格,再向上平移4格.(10分)

1)請在圖中畫出平移后的△A′B′C′。

2)再在圖中畫出△A′B′C′的高C′D′,并求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC、△DEF是兩個完全一樣的三角形,其中∠ACB=∠DFE=90°,∠A=∠D=30°.

(1)將它們擺成如圖①的位置(點E、FAB上,點CDF上,DEAC相交于點G).求∠AGD的度數(shù).

(2)將圖①的△ABC固定,把△DEF繞點F按逆時針方向旋轉(zhuǎn)n°.

①當△DEF旋轉(zhuǎn)到DE∥AB的位置時(如圖2), n =

②若由圖①旋轉(zhuǎn)后的EF能與△ABC的一邊垂直,則n的值為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A,B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關他這次探究活動的描述錯誤的是(  )

A. AB=24 m B. MNAB C. CMN∽△CAB D. CMMA=12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點坐標;

(2)如圖過C點作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點A在Y軸上運動,以OA為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問A點在運動過程中SAOB:SAEF的值是否會發(fā)生變化?如果沒有變化,請直接寫出它們的比值   (不需要解答過程或說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC

(1)圖①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度數(shù).

2)圖②中,請你在直線AD上任意取一點E(不與點A、D重合),畫EF⊥BC,垂足為F.已知∠B=α,∠C=ββa.求∠DEF的度數(shù). (用α、β的代數(shù)式表示)

查看答案和解析>>

同步練習冊答案