【題目】已知反比例函數(shù)為常數(shù),)的圖象經(jīng)過兩點.

(1)求該反比例函數(shù)的解析式和的值;

(2)時,求的取值范圍;

(3)為直線上的一個動點,當最小時,求點的坐標.

【答案】(1);(2)當時, 的取值范圍是;(3)點的坐標為

【解析】

(1)把點A坐標直接代入可求k值,得出函數(shù)解析式,再把自變量-6代入解析式可得出n的值

(2)根據(jù)k的值可確定函數(shù)經(jīng)過的象限,在一、三象限,在每個象限內的增大而減小,當x=-1時,y=-3,從而可求出y的取值范圍

(3)作點A關于y=x的對稱點,連接,線段,由,B的坐標求出直線的解析式,最后根據(jù)兩直線解析式求出點M的坐標.

解:()把代入,

反比例函數(shù)解析式為;

代入,解得;

(2),

圖象在一、三象限,在每個象限內的增大而減小,

代入,

時, 的取值范圍是

(3)點關于直線的對稱點為,則,連接,交直線于點,

此時,,

的最小值,

設直線的解析式為,

,解得,

直線的解析式為,

,解得

的坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,AC5BC12,且∠A90°+B,則點OAB的距離為( 。

A.B.C.D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象與x軸、y軸分別交于A,B兩點,與反比例函數(shù)y的圖象分別交于C,D兩點,點C2,4),點B是線段AC的中點.

1)求一次函數(shù)yk1x+b與反比例函數(shù)y的解析式;

2)求△COD的面積;

3)直接寫出當x取什么值時,k1x+b

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是菱形,在同一條直線上,.

1)求證:;

2)當時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通達橋即小店汾河橋,是太原新建成的一座跨汾大橋,也是太原首座懸索橋.橋的主塔由曲線形拱門組成,取意“時代之門”.無人機社團的同學計劃利用無人機設備測量通達橋拱門的高度.如圖,他們先將無人機升至距離橋面50米高的點C處,測得橋的拱門最高點A的仰角∠ACF30°,再將無人機從C處豎直向上升高200米到點D處,測得點A的俯角∠ADG45°.已知點A,BC,DE在同一平面內,求通達橋拱門最高點A距離橋面BE的高度AB(結果保留整數(shù),參考數(shù)據(jù):1.41,1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,兩點.

(1)求m、k、b的值;

(2)連接OA、OB,計算三角形OAB的面積;

(3)結合圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:有且僅有一組對角相等的凸四邊形叫做準平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準平行四邊形.

1)如圖①,上的四個點,,延長,使.求證:四邊形是準平行四邊形;

2)如圖②,準平行四邊形內接于,若的半徑為,求的長;

3)如圖③,在中,,若四邊形是準平行四邊形,且,請直接寫出長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OC是△ABCAB邊的中線,∠ABC36°,點DOC上一點,如果ODkOC,過DDECA交于BAE,點MDE的中點,將△ODE繞點O順時針旋轉α度(其中0°<α180°)后,射線OM交直線BC于點N

1)如果△ABC的面積為26,求△ODE的面積(用k的代數(shù)式表示);

2)當NB不重合時,請?zhí)骄俊?/span>ONB的度數(shù)y與旋轉角α的度數(shù)之間的函數(shù)關系式;

3)寫出當△ONB為等腰三角形時,旋轉角α的度數(shù).

查看答案和解析>>

同步練習冊答案