某商場銷售某品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠家要求每箱售價在40元~70元之間,市場調(diào)查發(fā)現(xiàn):若以每箱50元銷售,平均每天可銷售90箱,價格每降低1元,平均每天多銷售3箱,價格每升高1元,平均每天少銷售3箱.

(1)

(1)求出商場平均每天銷售這種牛奶的利潤W(元)與每箱牛奶的售價x(元)之間的二次函數(shù)關(guān)系式;(每箱的利潤=售價-進價)

(2)

求出(1)中二次函數(shù)圖象的頂點坐標,并求當x=40和70時W的值,并在平面直角坐標系中畫出函數(shù)的草圖;

(3)

由函數(shù)圖象可以看出,當牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?

答案:
解析:

(1)

解:平均每天銷售量y(箱)與每箱售價x(元)之間的關(guān)系式為y=240-3x(40≤x≤70),平均每天的利潤W=(240-3x)(x-40),即W=-3x2+360x-9600;

(2)

解:W=-3x2+360x-9600=-3(x-60)2+1200.此二次函數(shù)圖象的頂點坐標為(60,1200).當x=40時,W=-3(40-60)2+1200=0;當x=70時,W=-3×(70-60)2+1200=900.

(3)

解:由圖象易知,當牛奶售價為60元時,平均每天的利潤最大,最大利潤為1200元.草圖如圖

  解題指導(dǎo):每天總利潤=每箱的利潤×每天銷售量.另外注意在實際問題中自變量的取值范圍.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、某商場銷售某種品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠家要求每箱售價在40元至70元之間.市場調(diào)查發(fā)現(xiàn):若每箱以50元銷售,平均每天可銷售90箱,價格每降低1元,平均每天多銷售3箱,價格每升高l元,平均每天少銷售3箱.
(1)寫出平均每天銷售量y(箱)與每箱售價x(元)之間的函數(shù)關(guān)系式.(注明范圍) 
 (2)求出商場平均每天銷售這種牛奶的利潤W(元),與每箱牛奶的售價x(元)之間的二次函數(shù)關(guān)系式.(每箱的利潤=售價-進價)
(3)求出(2)中二次函數(shù)圖象的頂點坐標,并求當x=40,70時W的值.在給出的坐標系中畫出函數(shù)圖象的草圖.
(4)由函數(shù)圖象可以看出,當牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、某商場銷售某種品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠家要求每箱售價在40~70元之間.市場調(diào)查發(fā)現(xiàn):若每箱以50元銷售,平均每天可銷售90箱,價格每升高1元,平均每天少銷售3箱.
(1)求商場平均每天銷售這種牛奶的利潤W(元)與每箱牛奶的售價x(元)之間的函數(shù)關(guān)系式;(每箱的利潤=售價-進價)
(2)求出(1)中二次函數(shù)圖象的頂點坐標,并當x=40,70時W的值.在直角坐標系中畫出函數(shù)圖象的草圖;
(3)根據(jù)圖象可以看出,當牛奶售價為多少時,平均每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場銷售某種品牌的純牛奶,已知進價為每箱40元,市場調(diào)查發(fā)現(xiàn),若每箱以50元銷售,平均每天可銷售90箱,價格每降低1元,平均每天多售3箱,價格每升高1元,平均每天少售3箱.
①寫出平均每天的銷售量y與每箱售價x之間關(guān)系;
②求出商場平均每天銷售這種牛奶的利潤w與每箱售價x之間的關(guān)系;
③求在②的情況下當牛奶每箱售價定為多少時可達到最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某商場銷售某種品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠家要求每箱售價在40~65元之間.市場調(diào)查發(fā)現(xiàn):若每箱以50元銷售,平均每天可銷售90箱;價格每降低1元,平均每天多銷售3箱;價格每升高1元,平均每天少銷售3箱.
(1)寫出平均每天銷售y(箱)與每箱售價x(元)之間的關(guān)系式;
(2)求出商場平均每天銷售這種牛奶的利潤W(元)與每箱牛奶的售價x(元)之間的關(guān)系式(每箱的利潤=售價-進價);
(3)當每箱牛奶售價為多少時,平均每天的利潤為900元?
(4)當每箱牛奶售價為多少時,平均每天的利潤為1200元?

查看答案和解析>>

同步練習冊答案