如圖1,△ABC中,AI、BI分別平分∠BAC、∠ABC.CE是△ABC的外角∠ACD的平分線(xiàn),交BI延長(zhǎng)線(xiàn)于E,連接CI.
(1)△ABC變化時(shí),設(shè)∠BAC=2α.若用α表示∠BIC和∠E,那么∠BIC=
 
,∠E=
 
;
(2)若AB=1,且△ABC與△ICE相似,求相應(yīng)AC長(zhǎng);
(3)如圖2,延長(zhǎng)AI交EC延長(zhǎng)線(xiàn)于F.當(dāng)△ABC形狀、大小變化時(shí),圖中有哪些三角形始終與△ABI相似?寫(xiě)出這些三角形,并選其中之一證明.
精英家教網(wǎng)
分析:(1)根據(jù)三角形內(nèi)角與外角的關(guān)系可以用α表示∠BIC和∠E;
(2)△ABC與△ICE相似,根據(jù)題意知∠ICE=90°,可分三種情況討論并求出相應(yīng)AC長(zhǎng);
(3)共三對(duì)△EIF、△ECB、△ACF.以△EIF∽△ABI為例說(shuō)明:由于∠ACD是△ABC的外角,可得出∠ACD=∠BAC+∠ABC;由于CE、IA、IB分別為∠ACD、∠BAC、∠ABC的角平分線(xiàn),不難得出∠ECD=∠BCF=∠BIF=∠BAI+∠ABI,由此可得出∠BCE=∠EIF,即可證得△EIF∽△ECB;即∠EBC=∠F=∠ABI,再加上兩三角形中一組對(duì)頂角,即可證得所求的兩三角形相似.
解答:解:(1)90°+α,α.

精英家教網(wǎng)(2))△ABC與△ICE相似,根據(jù)題意知∠ICE=90°,所以本題分三種情況:
①若∠BAC=90°,如圖1,易證∠EIC=45°,則△ABC為等腰直角三角形,∴AC=AB=1.
精英家教網(wǎng)②∠ABC=90°,如圖2,推出∠E=
1
2
∠BAC,∴△ABC∽△ICE,∴∠ACB=∠E=
1
2
∠BAC,∴∠BAC=60°,∠ACB=30°,AC=2AB=2.
精英家教網(wǎng)③∠ACB=90°,如圖3,同2,推出Rt△ABC中,∠BAC=60°,∠ABC=30°,AC=
1
2
AB=
1
2


(3)寫(xiě)出:△EIF,△ECB,△ACF.
證明其中一個(gè)三角形與△AIB相似.如:△EIF∽△AIB.
證明:∵CE平分∠ACD,∴∠ECD=∠ACE=∠BCF=
1
2
∠ACD.
同理可得出∠BAI=∠IAC=
1
2
∠BAC,∠ABE=∠IBC=
1
2
∠ABC.
∵∠ACD=∠BAC+∠ABC,
∴∠BCF=∠ECD=∠BAI+∠ABI=∠BIF,
∴∠ECB=∠EIF;
∵∠BEC=∠IEF,
∴△IEF∽△BCE;
∴∠EBC=∠F=∠ABI.
又∵∠BAI=∠IEF,
∴△BIA∽△FIE.
點(diǎn)評(píng):本題難度中等,考查相似三角形的判定和性質(zhì),以及三角形內(nèi)角與外角的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,在△ABC中,AB=AC,AD是△ABC的平分線(xiàn),DE⊥AB,DF⊥AC,垂足分別是E,F(xiàn).則下面結(jié)論中①DA平分∠EDF;②AE=AF,DE=DF;③AD上的點(diǎn)到B、C兩點(diǎn)距離相等;④圖中共有3對(duì)全等三角形,正確的有:
①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、如圖,在△ABC中,AB=20cm,AC=12cm,點(diǎn)P從點(diǎn)B出發(fā)以每秒3cm的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q從點(diǎn)A同時(shí)出發(fā)以每秒2cm的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),當(dāng)△APQ是等腰三角形時(shí),運(yùn)動(dòng)的時(shí)間是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,∠BAC=100°,MP、NO分別垂直平分AB、AC,求∠1,∠2的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖,在△ABC中,∠C=90°,DE⊥AB于E,DF⊥BC于F.求證:△DEH∽△BCA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,DC是斜邊AB上的中線(xiàn),EF過(guò)點(diǎn)C且平行于AB.若∠BCF=35°,則∠ACD的度數(shù)是( 。
A、35°B、45°C、55°D、65°

查看答案和解析>>

同步練習(xí)冊(cè)答案