【題目】(1)如圖,已知直線AB、CD交于點(diǎn)O,OE平分∠BOD,若∠3:∠2=81,求∠AOC的度數(shù).

(2)計(jì)算題

4x22-25=0

【答案】136°;(2)①1;②

【解析】

1)根據(jù)角平分線的定義得∠1=2,由∠3:∠2=81得∠3=82.根據(jù)平角的定義有∠1+2+3=180°,則∠2+2+82=180°,可解得出∠2=18°,而根據(jù)對(duì)頂角相等有∠AOC=1+2,然后把∠1、∠2的度數(shù)代入計(jì)算即可.

(2)

1)根據(jù)開(kāi)方運(yùn)算,可化簡(jiǎn)根式,根據(jù)實(shí)數(shù)的運(yùn)算,可得答案.

2)解方程,先等式移向,開(kāi)根號(hào)分別求得x的值即可.

1)∵平分∠BOD

∴∠1=2,

∵∠3:2=8:1,

∴∠3=82.

∵∠1+2+3=180°,

∴∠2+2+82=180°,

解得∠2=18°,

∴∠AOC=1+2=36°.

故答案為:36°

2)①= ==1

②∵4x22-25=0

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù):

﹣3.1,3.1415,﹣,+31,0.618,﹣,0,﹣1,﹣(﹣3),填在相應(yīng)的集合里

分?jǐn)?shù)集合:      ;

整數(shù)集合:      ;

非負(fù)整數(shù)集合:      

正有理數(shù)集合:      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被平均分成3個(gè)扇形,分別標(biāo)有1、2、3三個(gè)數(shù)字,小王和小李各轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)為一次游戲,當(dāng)每次轉(zhuǎn)盤(pán)停止后,指針?biāo)干刃蝺?nèi)的數(shù)為各自所得的數(shù),一次游戲結(jié)束得到一組數(shù)若指針指在分界線時(shí)重轉(zhuǎn)).

1請(qǐng)你用樹(shù)狀圖或列表的方法表示出每次游戲可能出現(xiàn)的所有結(jié)果;

2求每次游戲結(jié)束得到的一組數(shù)恰好是方程x2-3x+2=0的解的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,BAD=C=90°,AB=AD,AEBC于E,若線段AE=5,則S四邊形ABCD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】唐山質(zhì)量監(jiān)督局從某食品廠生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),把超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:

與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克)

﹣6

﹣2

0

1

3

4

袋數(shù)

1

4

3

4

5

3

1)若每袋食品的標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的20袋食品的總質(zhì)量是多少克?

2)若該種食品的合格標(biāo)準(zhǔn)為450±5克,求該種食品抽樣檢測(cè)的合格率?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

12(-4)+(-2

33

⑥-14(0.52)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A0,4),點(diǎn)Bm,0),以AB為邊在右側(cè)作正方形ABCD

1)當(dāng)點(diǎn)Bx軸正半軸上運(yùn)動(dòng)時(shí),求點(diǎn)C點(diǎn)的坐標(biāo).(用m表示)

2)當(dāng)m=0時(shí),如圖2POA上一點(diǎn),過(guò)點(diǎn)PPMPCPM=PC,連MCOD于點(diǎn)N,求AM+2DN的值;

3)如圖3,在第(2)問(wèn)的條件下,E、F分別為CD、CO上的點(diǎn),作EGx軸交AOG,作FHy軸交ADH,KEGFH的交點(diǎn).若S四邊形KFCE=2S四邊形AGKH,試確定∠EAF的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為保護(hù)環(huán)境,我市某公交公司計(jì)劃購(gòu)買(mǎi)A型和B型兩種環(huán)保節(jié)能公交車(chē)共10輛,若購(gòu)買(mǎi)A型公交車(chē)1輛,B型公交車(chē)2輛,共需400萬(wàn)元;若購(gòu)買(mǎi)A型公交車(chē)3輛,B型公交車(chē)2輛,共需600萬(wàn)元.

(1)求購(gòu)買(mǎi)A型和B型公交車(chē)每輛各需多少萬(wàn)元?

(2)預(yù)計(jì)在某線路上A型和B型公交車(chē)每輛年均載客量分別為60萬(wàn)人次和100萬(wàn)人次.若該公司購(gòu)買(mǎi)A型和B型公交車(chē)的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車(chē)在該線路的年均載客總和不少于680萬(wàn)人次,則該公司有哪幾種購(gòu)車(chē)方案?

(3)(2)的條件下,哪種購(gòu)車(chē)方案總費(fèi)用最少?最少總費(fèi)用是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=k1x+bx軸、y軸相交于PQ兩點(diǎn),與y=的圖象相交于A(-2,m),B1,n)兩點(diǎn),連接OA,OB,給出下列論:①k1k2<0;②m+n=0③SAOP=SBOQ;不等式k1x+b>的解集為x<20<x<1.其中正確的結(jié)論是________

查看答案和解析>>

同步練習(xí)冊(cè)答案